RichardErkhov
commited on
Commit
•
4a207ab
1
Parent(s):
b756487
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
MiniChat-1.5-3B - GGUF
|
11 |
+
- Model creator: https://huggingface.co/GeneZC/
|
12 |
+
- Original model: https://huggingface.co/GeneZC/MiniChat-1.5-3B/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [MiniChat-1.5-3B.Q2_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q2_K.gguf) | Q2_K | 1.09GB |
|
18 |
+
| [MiniChat-1.5-3B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.IQ3_XS.gguf) | IQ3_XS | 1.21GB |
|
19 |
+
| [MiniChat-1.5-3B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.IQ3_S.gguf) | IQ3_S | 1.27GB |
|
20 |
+
| [MiniChat-1.5-3B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q3_K_S.gguf) | Q3_K_S | 1.27GB |
|
21 |
+
| [MiniChat-1.5-3B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.IQ3_M.gguf) | IQ3_M | 1.33GB |
|
22 |
+
| [MiniChat-1.5-3B.Q3_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q3_K.gguf) | Q3_K | 1.4GB |
|
23 |
+
| [MiniChat-1.5-3B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q3_K_M.gguf) | Q3_K_M | 1.4GB |
|
24 |
+
| [MiniChat-1.5-3B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q3_K_L.gguf) | Q3_K_L | 1.52GB |
|
25 |
+
| [MiniChat-1.5-3B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.IQ4_XS.gguf) | IQ4_XS | 1.55GB |
|
26 |
+
| [MiniChat-1.5-3B.Q4_0.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q4_0.gguf) | Q4_0 | 1.62GB |
|
27 |
+
| [MiniChat-1.5-3B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.IQ4_NL.gguf) | IQ4_NL | 1.63GB |
|
28 |
+
| [MiniChat-1.5-3B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q4_K_S.gguf) | Q4_K_S | 1.63GB |
|
29 |
+
| [MiniChat-1.5-3B.Q4_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q4_K.gguf) | Q4_K | 1.72GB |
|
30 |
+
| [MiniChat-1.5-3B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q4_K_M.gguf) | Q4_K_M | 1.72GB |
|
31 |
+
| [MiniChat-1.5-3B.Q4_1.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q4_1.gguf) | Q4_1 | 1.79GB |
|
32 |
+
| [MiniChat-1.5-3B.Q5_0.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q5_0.gguf) | Q5_0 | 1.95GB |
|
33 |
+
| [MiniChat-1.5-3B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q5_K_S.gguf) | Q5_K_S | 1.95GB |
|
34 |
+
| [MiniChat-1.5-3B.Q5_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q5_K.gguf) | Q5_K | 2.01GB |
|
35 |
+
| [MiniChat-1.5-3B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q5_K_M.gguf) | Q5_K_M | 2.01GB |
|
36 |
+
| [MiniChat-1.5-3B.Q5_1.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q5_1.gguf) | Q5_1 | 2.12GB |
|
37 |
+
| [MiniChat-1.5-3B.Q6_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q6_K.gguf) | Q6_K | 2.31GB |
|
38 |
+
| [MiniChat-1.5-3B.Q8_0.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-1.5-3B-gguf/blob/main/MiniChat-1.5-3B.Q8_0.gguf) | Q8_0 | 2.99GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
language:
|
46 |
+
- en
|
47 |
+
- zh
|
48 |
+
license: apache-2.0
|
49 |
+
library_name: transformers
|
50 |
+
widget:
|
51 |
+
- text: <s> [|User|] Hi 👋 </s>[|Assistant|]
|
52 |
+
model-index:
|
53 |
+
- name: MiniChat-1.5-3B
|
54 |
+
results:
|
55 |
+
- task:
|
56 |
+
type: text-generation
|
57 |
+
name: Text Generation
|
58 |
+
dataset:
|
59 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
60 |
+
type: ai2_arc
|
61 |
+
config: ARC-Challenge
|
62 |
+
split: test
|
63 |
+
args:
|
64 |
+
num_few_shot: 25
|
65 |
+
metrics:
|
66 |
+
- type: acc_norm
|
67 |
+
value: 46.5
|
68 |
+
name: normalized accuracy
|
69 |
+
source:
|
70 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
|
71 |
+
name: Open LLM Leaderboard
|
72 |
+
- task:
|
73 |
+
type: text-generation
|
74 |
+
name: Text Generation
|
75 |
+
dataset:
|
76 |
+
name: HellaSwag (10-Shot)
|
77 |
+
type: hellaswag
|
78 |
+
split: validation
|
79 |
+
args:
|
80 |
+
num_few_shot: 10
|
81 |
+
metrics:
|
82 |
+
- type: acc_norm
|
83 |
+
value: 68.28
|
84 |
+
name: normalized accuracy
|
85 |
+
source:
|
86 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
|
87 |
+
name: Open LLM Leaderboard
|
88 |
+
- task:
|
89 |
+
type: text-generation
|
90 |
+
name: Text Generation
|
91 |
+
dataset:
|
92 |
+
name: MMLU (5-Shot)
|
93 |
+
type: cais/mmlu
|
94 |
+
config: all
|
95 |
+
split: test
|
96 |
+
args:
|
97 |
+
num_few_shot: 5
|
98 |
+
metrics:
|
99 |
+
- type: acc
|
100 |
+
value: 46.67
|
101 |
+
name: accuracy
|
102 |
+
source:
|
103 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
|
104 |
+
name: Open LLM Leaderboard
|
105 |
+
- task:
|
106 |
+
type: text-generation
|
107 |
+
name: Text Generation
|
108 |
+
dataset:
|
109 |
+
name: TruthfulQA (0-shot)
|
110 |
+
type: truthful_qa
|
111 |
+
config: multiple_choice
|
112 |
+
split: validation
|
113 |
+
args:
|
114 |
+
num_few_shot: 0
|
115 |
+
metrics:
|
116 |
+
- type: mc2
|
117 |
+
value: 50.71
|
118 |
+
source:
|
119 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
|
120 |
+
name: Open LLM Leaderboard
|
121 |
+
- task:
|
122 |
+
type: text-generation
|
123 |
+
name: Text Generation
|
124 |
+
dataset:
|
125 |
+
name: Winogrande (5-shot)
|
126 |
+
type: winogrande
|
127 |
+
config: winogrande_xl
|
128 |
+
split: validation
|
129 |
+
args:
|
130 |
+
num_few_shot: 5
|
131 |
+
metrics:
|
132 |
+
- type: acc
|
133 |
+
value: 65.04
|
134 |
+
name: accuracy
|
135 |
+
source:
|
136 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
|
137 |
+
name: Open LLM Leaderboard
|
138 |
+
- task:
|
139 |
+
type: text-generation
|
140 |
+
name: Text Generation
|
141 |
+
dataset:
|
142 |
+
name: GSM8k (5-shot)
|
143 |
+
type: gsm8k
|
144 |
+
config: main
|
145 |
+
split: test
|
146 |
+
args:
|
147 |
+
num_few_shot: 5
|
148 |
+
metrics:
|
149 |
+
- type: acc
|
150 |
+
value: 24.18
|
151 |
+
name: accuracy
|
152 |
+
source:
|
153 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
|
154 |
+
name: Open LLM Leaderboard
|
155 |
+
---
|
156 |
+
|
157 |
+
## MiniChat-1.5-3B
|
158 |
+
|
159 |
+
📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B)
|
160 |
+
|
161 |
+
🆕 **Updates from MiniChat-3B**:
|
162 |
+
- better data mixture;
|
163 |
+
- use of [NEFTune](https://arxiv.org/abs/2310.05914);
|
164 |
+
- use of [DPO](https://arxiv.org/abs/2305.18290).
|
165 |
+
|
166 |
+
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.
|
167 |
+
|
168 |
+
A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".
|
169 |
+
|
170 |
+
Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models.
|
171 |
+
|
172 |
+
<img src="./teaser_b.jpg" alt="teaser_b" width="687" />
|
173 |
+
|
174 |
+
The following is an example code snippet to use MiniChat-3B:
|
175 |
+
|
176 |
+
```python
|
177 |
+
import torch
|
178 |
+
|
179 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
180 |
+
|
181 |
+
from conversation import get_default_conv_template
|
182 |
+
|
183 |
+
# MiniChat
|
184 |
+
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
|
185 |
+
# GPU.
|
186 |
+
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
|
187 |
+
# CPU.
|
188 |
+
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()
|
189 |
+
|
190 |
+
conv = get_default_conv_template("minichat")
|
191 |
+
|
192 |
+
question = "Implement a program to find the common elements in two arrays without using any extra data structures."
|
193 |
+
conv.append_message(conv.roles[0], question)
|
194 |
+
conv.append_message(conv.roles[1], None)
|
195 |
+
prompt = conv.get_prompt()
|
196 |
+
input_ids = tokenizer([prompt]).input_ids
|
197 |
+
output_ids = model.generate(
|
198 |
+
torch.as_tensor(input_ids).cuda(),
|
199 |
+
do_sample=True,
|
200 |
+
temperature=0.7,
|
201 |
+
max_new_tokens=1024,
|
202 |
+
)
|
203 |
+
output_ids = output_ids[0][len(input_ids[0]):]
|
204 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
205 |
+
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements"
|
206 |
+
# Multiturn conversation could be realized by continuously appending questions to `conv`.
|
207 |
+
```
|
208 |
+
|
209 |
+
## Bibtex
|
210 |
+
|
211 |
+
```bibtex
|
212 |
+
@article{zhang2023law,
|
213 |
+
title={Towards the Law of Capacity Gap in Distilling Language Models},
|
214 |
+
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
|
215 |
+
year={2023},
|
216 |
+
url={https://arxiv.org/abs/2311.07052}
|
217 |
+
}
|
218 |
+
```
|
219 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
220 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GeneZC__MiniChat-1.5-3B)
|
221 |
+
|
222 |
+
| Metric |Value|
|
223 |
+
|---------------------------------|----:|
|
224 |
+
|Avg. |50.23|
|
225 |
+
|AI2 Reasoning Challenge (25-Shot)|46.50|
|
226 |
+
|HellaSwag (10-Shot) |68.28|
|
227 |
+
|MMLU (5-Shot) |46.67|
|
228 |
+
|TruthfulQA (0-shot) |50.71|
|
229 |
+
|Winogrande (5-shot) |65.04|
|
230 |
+
|GSM8k (5-shot) |24.18|
|
231 |
+
|
232 |
+
|
233 |
+
|