Create pipeline.py
Browse files- pipeline.py +103 -0
pipeline.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
#
|
4 |
+
# Copyright @2023 RhapsodyAI, ModelBest Inc. (modelbest.cn)
|
5 |
+
#
|
6 |
+
# @author: bokai xu <[email protected]>
|
7 |
+
# @date: 2024/07/13
|
8 |
+
#
|
9 |
+
|
10 |
+
|
11 |
+
import tqdm
|
12 |
+
from PIL import Image
|
13 |
+
import hashlib
|
14 |
+
import torch
|
15 |
+
import fitz
|
16 |
+
|
17 |
+
|
18 |
+
def get_image_md5(img: Image.Image):
|
19 |
+
img_byte_array = img.tobytes()
|
20 |
+
hash_md5 = hashlib.md5()
|
21 |
+
hash_md5.update(img_byte_array)
|
22 |
+
hex_digest = hash_md5.hexdigest()
|
23 |
+
return hex_digest
|
24 |
+
|
25 |
+
def pdf_to_images(pdf_path, dpi=100):
|
26 |
+
doc = fitz.open(pdf_path)
|
27 |
+
images = []
|
28 |
+
for page in tqdm.tqdm(doc):
|
29 |
+
pix = page.get_pixmap(dpi=dpi)
|
30 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
31 |
+
images.append(img)
|
32 |
+
return images
|
33 |
+
|
34 |
+
|
35 |
+
class PDFVisualRetrieval:
|
36 |
+
def __init__(self, model, tokenizer):
|
37 |
+
self.tokenizer = tokenizer
|
38 |
+
self.model = model
|
39 |
+
self.reps = {}
|
40 |
+
self.images = {}
|
41 |
+
|
42 |
+
def add_visual_documents(self, knowledge_base_name: str, images: Image.Image):
|
43 |
+
if knowledge_base_name not in self.reps:
|
44 |
+
self.reps[knowledge_base_name] = {}
|
45 |
+
if knowledge_base_name not in self.images:
|
46 |
+
self.images[knowledge_base_name] = {}
|
47 |
+
for image in tqdm.tqdm(images):
|
48 |
+
image_md5 = get_image_md5(image)
|
49 |
+
with torch.no_grad():
|
50 |
+
reps = self.model(text=[''], image=[image], tokenizer=self.tokenizer).reps
|
51 |
+
self.reps[knowledge_base_name][image_md5] = reps.squeeze(0)
|
52 |
+
self.images[knowledge_base_name][image_md5] = image
|
53 |
+
return
|
54 |
+
|
55 |
+
def retrieve(self, knowledge_base: str, query: str, topk: int):
|
56 |
+
doc_reps = list(self.reps[knowledge_base].values())
|
57 |
+
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
58 |
+
with torch.no_grad():
|
59 |
+
query_rep = self.model(text=[query_with_instruction], image=[None], tokenizer=self.tokenizer).reps.squeeze(0)
|
60 |
+
doc_reps_cat = torch.stack(doc_reps, dim=0)
|
61 |
+
similarities = torch.matmul(query_rep, doc_reps_cat.T)
|
62 |
+
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
|
63 |
+
topk_values_np = topk_values.cpu().numpy()
|
64 |
+
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
|
65 |
+
similarities_np = similarities.cpu().numpy()
|
66 |
+
all_images_doc_list = list(self.images[knowledge_base].values())
|
67 |
+
images_topk = [all_images_doc_list[idx] for idx in topk_doc_ids_np]
|
68 |
+
return topk_doc_ids_np, topk_values_np, images_topk
|
69 |
+
|
70 |
+
def add_pdf(self, knowledge_base_name: str, pdf_file_path: str, dpi: int = 100):
|
71 |
+
print("[1/2] rendering pdf to images..")
|
72 |
+
images = pdf_to_images(pdf_file_path, dpi=dpi)
|
73 |
+
print("[2/2] model encoding images..")
|
74 |
+
self.add_visual_documents(knowledge_base_name=knowledge_base_name, images=images)
|
75 |
+
print("add pdf ok.")
|
76 |
+
return
|
77 |
+
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
from transformers import AutoModel
|
81 |
+
from transformers import AutoTokenizer
|
82 |
+
from PIL import Image
|
83 |
+
import torch
|
84 |
+
|
85 |
+
device = 'cuda:0'
|
86 |
+
|
87 |
+
# Load model, be sure to substitute `model_path` by your model path
|
88 |
+
model_path = '/home/jeeves/xubokai/minicpm-visual-embedding-v0'
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
90 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
91 |
+
model.to(device)
|
92 |
+
|
93 |
+
pdf_path = "/home/jeeves/xubokai/minicpm-visual-embedding-v0/2406.07422v1.pdf"
|
94 |
+
retriever = PDFVisualRetrieval(model=model, tokenizer=tokenizer)
|
95 |
+
retriever.add_pdf('test', pdf_path)
|
96 |
+
|
97 |
+
topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='what is the number of VQ of this kind of codec method?', topk=1)
|
98 |
+
# 2
|
99 |
+
topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the training loss curve of this paper?', topk=1)
|
100 |
+
# 3
|
101 |
+
topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the experiment table?', topk=1)
|
102 |
+
# 2
|
103 |
+
|