|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
import math |
|
import requests |
|
from io import BytesIO |
|
from functools import partial |
|
from PIL import Image |
|
from typing import Callable, Optional, Sequence, Tuple, List, Union |
|
import numpy as np |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.nn.init import trunc_normal_ |
|
from torchvision import transforms |
|
from torchvision.transforms import InterpolationMode |
|
|
|
def get_abs_pos(abs_pos, tgt_size): |
|
|
|
|
|
|
|
src_size = int(math.sqrt(abs_pos.size(0))) |
|
|
|
dtype = abs_pos.dtype |
|
|
|
return F.interpolate( |
|
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), |
|
size=(tgt_size[0], tgt_size[1]), |
|
mode="bicubic", |
|
align_corners=False, |
|
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) |
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
if isinstance(grid_size, int): |
|
grid_h_size, grid_w_size = grid_size, grid_size |
|
else: |
|
grid_h_size, grid_w_size = grid_size[0], grid_size[1] |
|
|
|
grid_h = np.arange(grid_h_size, dtype=np.float32) |
|
grid_w = np.arange(grid_w_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000 ** omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
class Resampler(nn.Module): |
|
""" |
|
A 2D perceiver-resampler network with one cross attention layers by |
|
(grid_size**2) learnable queries and 2d sincos pos_emb |
|
Outputs: |
|
A tensor with the shape of (grid_size**2, embed_dim) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
grid_size, |
|
embed_dim, |
|
num_heads, |
|
kv_dim=None, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
adaptive=False |
|
): |
|
super().__init__() |
|
self.num_queries = grid_size ** 2 |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.adaptive = adaptive |
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float() |
|
).requires_grad_(False) |
|
|
|
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) |
|
trunc_normal_(self.query, std=.02) |
|
|
|
if kv_dim is not None and kv_dim != embed_dim: |
|
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False) |
|
else: |
|
self.kv_proj = nn.Identity() |
|
|
|
self.attn = nn.MultiheadAttention(embed_dim, num_heads) |
|
self.ln_q = norm_layer(embed_dim) |
|
self.ln_kv = norm_layer(embed_dim) |
|
|
|
self.ln_post = norm_layer(embed_dim) |
|
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim)) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x, tgt_size=None, attn_mask=None): |
|
if self.adaptive: |
|
|
|
|
|
pos_embed = torch.Tensor(get_2d_sincos_pos_embed(self.embed_dim, tgt_size)).float().to(device=x.device, dtype=x.dtype) |
|
else: |
|
pos_embed = get_abs_pos(self.pos_embed, tgt_size) |
|
|
|
x = self.kv_proj(x) |
|
x = self.ln_kv(x).permute(1, 0, 2) |
|
|
|
N = x.shape[1] |
|
q = self.ln_q(self.query) |
|
out = self.attn( |
|
self._repeat(q, N) + self.pos_embed.unsqueeze(1), |
|
x + pos_embed.unsqueeze(1), |
|
x, |
|
attn_mask=attn_mask)[0] |
|
x = out.permute(1, 0, 2) |
|
|
|
x = self.ln_post(x) |
|
x = x @ self.proj |
|
return x |
|
|
|
def _repeat(self, query, N: int): |
|
return query.unsqueeze(1).repeat(1, N, 1) |
|
|