File size: 5,403 Bytes
80c6598
 
 
0297db8
 
 
 
3a858ea
 
 
db7ffe4
80c6598
 
1d378fb
80c6598
d917af7
80c6598
 
 
 
 
f983391
a85e0a4
f983391
63057ca
f983391
36aa603
90cd162
80c6598
fc9ff17
80c6598
aed8933
817d582
703e627
 
 
 
 
11311ed
aed8933
3081d81
 
 
 
 
 
 
 
7923606
3081d81
 
aed8933
 
 
817d582
 
 
3081d81
817d582
 
aed8933
817d582
 
aed8933
a1ac49a
817d582
 
aed8933
dc6a88d
 
 
 
 
 
aed8933
 
 
dc6a88d
817d582
 
 
 
 
 
 
 
34ec5c6
 
 
 
 
817d582
34ec5c6
 
 
 
817d582
34ec5c6
817d582
 
 
 
 
34ec5c6
02714ae
817d582
34ec5c6
 
02714ae
817d582
34ec5c6
 
817d582
c37926b
14fb892
 
c26facf
 
aed8933
c26facf
aed8933
c26facf
aed8933
c26facf
14fb892
 
1de78e8
 
a454b7c
 
 
 
a22168a
 
 
 
db7ffe4
7c03122
a22168a
 
 
 
 
 
fe21202
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
language:
- en
tags:
- information retrieval
- embedding model
- visual information retrieval
metrics:
- recall
pipeline_tag: feature-extraction
license: apache-2.0
---

# Memex: OCR-free Visual Document Embedding Model as Your Personal Librarian

The model only takes images as document-side inputs and produce vectors representing document pages. `minicpm-visual-embedding-v0` is trained with over 200k query-visual document pairs, including textual document, visual document, arxiv figures, plots, charts, industry documents, textbooks, ebooks, and openly-available PDFs, etc. The performance of `minicpm-visual-embedding-v0` is on a par with our ablation text embedding model on text-oriented documents, and an advantages on visually-intensive documents.

![Memex Archtechture](images/memex.png)

# News

- 2024-07-14: πŸ€— We released **online huggingface demo**! Try our [online demo](https://huggingface.co/spaces/bokesyo/minicpm-visual-embeeding-v0-demo)!

- 2024-07-14: πŸ˜‹ We released a **locally deployable Gradio demo** of `miniCPM-visual-embedding-v0`, take a look at [pipeline_gradio.py](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/blob/main/pipeline_gradio.py). You can run `pipeline_gradio.py` to build a demo on your PC.

- 2024-07-13: πŸ’» We released a **locally deployable command-line based demo** of `miniCPM-visual-embedding-v0` for users to retireve most relavant pages from a given PDF file (could be very long), take a look at [pipeline.py](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/blob/main/pipeline.py).

- 2024-06-27: πŸš€ We released our first visual embedding model checkpoint minicpm-visual-embedding-v0 on [huggingface](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0).

- 2024-05-08: 🌍 We [open-sourced](https://github.com/RhapsodyAILab/minicpm-visual-embedding-v0) our training code (full-parameter tuning with GradCache and DeepSpeed, supports large batch size across multiple GPUs with zero-stage1) and eval code. 

# Deploy on your PC

**Please make sure you have at least 32GB memory on your PC.**

- Apple M1/M2/M3 with 32GB memory.
- x86 CPU with 32GB memory.
- x86 CPU with 32GB memory + Nvidia GPU with 16GB memory.

1. Pip install all dependencies:

```
Pillow==10.1.0
timm==0.9.10
torch==2.1.2
torchvision==0.16.2
transformers==4.36.0
sentencepiece==0.1.99
numpy==1.26.0
```

2. Download the model weights and modeling file, choose one of the following:

- Download with git clone.

```bash
git lfs install
git clone https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0
```

- Download with huggingface-hub.

```bash
pip install huggingface-hub
huggingface-cli download --resume-download RhapsodyAI/minicpm-visual-embedding-v0 --local-dir minicpm-visual-embedding-v0 --local-dir-use-symlinks False
```

3. To deploy a local demo, first check `pipeline_gradio.py`, change `model_path` to your local path and change `device` to your device (for users with Nvidia card, use `cuda`, for users with apple silicon, use `mps`, for users with only x86 cpu, please use `cpu`). then launch the demo:

```bash
pip install gradio
python pipeline_gradio.py
```

# For research purpose

To run the model for research purpose, please refer the following code:

```python
from transformers import AutoModel
from transformers import AutoTokenizer
from PIL import Image
import torch

device = 'cuda:0'

# Load model, be sure to substitute `model_path` by your model path 
model_path = '/local/path/to/model'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.to(device)

# Load image to PIL.Image object
image_1 = Image.open('/local/path/to/images/memex.png').convert('RGB')
image_2 = Image.open('/local/path/to/images/us2020.png').convert('RGB')
image_3 = Image.open('/local/path/to/images/hard_negative.png').convert('RGB')

# User query
query_instruction = 'Represent this query for retrieving relavant document: '
query = 'Who was elected as president of United States in 2020?'
query_full = query_instruction + query

# Embed image documents
with torch.no_grad():
    p_reps = model(text=['', '', ''], image=[image_1, image_2, image_3], tokenizer=tokenizer).reps

# Embed text queries
with torch.no_grad():
    q_reps = model(text=[query_full], image=[None], tokenizer=tokenizer).reps # [B, s, d]

# Calculate similarities
scores = torch.matmul(q_reps, p_reps.T)
print(scores)
# tensor([[-0.0112,  0.3316,  0.2376]], device='cuda:0')
```

# Todos

[x] Release huggingface space demo.

[] Release the evaluation results.

[] Release technical report.

# Limitations

- This checkpoint is an alpha version, and may not be strong in your tasks, for bad case, please create an issue to let us know, many thanks!

- The modeling script `modeling_minicpmv` on `huggingface` is not standard yet, the inference code could be further improved.

- The inference speed is low, because vision encoder uses `timm`, which does not yet support `flash-attn`.

# Citation

If you find our work useful, please consider cite us:

```bibtex
@misc{RhapsodyEmbedding2024,
  author = {RhapsodyAI},
  title = {OCR-free Visual Document Embedding Model as Your Personal Librarian},
  year = {2024},
  howpublished = {\url{https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0}},
  note = {Accessed: 2024-06-28}
}
```