Upload folder using huggingface_hub
Browse files- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/config.json +30 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/generation_config.json +10 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/latest +1 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00001-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00002-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00003-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00004-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00005-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00006-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model.safetensors.index.json +370 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_0.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_1.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_2.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_3.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_4.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_5.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_6.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_7.pth +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/scheduler.pt +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/special_tokens_map.json +24 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.json +0 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.model +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer_config.json +43 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/trainer_state.json +2140 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/training_args.bin +3 -0
- uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 5120,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 13824,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 40,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.46.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 35483
|
30 |
+
}
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.46.3"
|
10 |
+
}
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step600
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7404770436c5dd040e59adac4e67745f2bf7bc984029f60f55bd6a08a5018d87
|
3 |
+
size 4961502800
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a4799e63078515ff6ea6368ecadec4831c5e4be85e2075c1937fe165485fdae
|
3 |
+
size 4970422232
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7f2f24f13376bb67149076b07a934742f36af5c21c8fa16a90cb423f61e803c
|
3 |
+
size 4881272584
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5856072d59472c91897e0dd8b3176f4c30f7dfba2fb03459dec78b270db66077
|
3 |
+
size 4933722216
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c0d71d2264dd43cc7c7165d1f3318da01b827efb6ff3bd8e5b3634fa4a0c632
|
3 |
+
size 4933722208
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fc4cb77a4c9ede2854d09a3890fa8a5c98ad8944fb63ac39616bd69090e6a85
|
3 |
+
size 1422460712
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26103060480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
369 |
+
}
|
370 |
+
}
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a4639c63dd87ac33e45e3023adf278d225bcd84f3716bdf300ca937d7c28411
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d98634ab74d1b6c3b107bd223d174aa7e02fd4a2b2d6101ecebdd4176f2c84f5
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd4f75d8f1f8239b80b7fbf53b019cce45e362f7b71af64e66d404070bc686bf
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e9404b8ac4a720bcb8b487c880ce34d3ff2b170ed00e374f27c80aef144a04a
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dc4dd7a62d55ce80ab99ebc1759af8a1c5eb33377a107a7f9165349321b7d10
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:769d4f3f169a4b113287ed32b16e0940c67525bc8f3f98a0880e7404af13a165
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29c8b24910d22e122e4179c4725875248c943a60476d9e2f4ffc14d84853698f
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15a18f30295c7ca7ec4d2dc6672effd06c2fc171a24d9333361d84ca8bab9f91
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbb32cd664c03f99416e88cb165664261c944f0a93911cbd353552af4df2e3dd
|
3 |
+
size 1064
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
|
3 |
+
size 558602
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/trainer_state.json
ADDED
@@ -0,0 +1,2140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 4.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 600,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.006666666666666667,
|
13 |
+
"grad_norm": 2.1791141124998874,
|
14 |
+
"learning_rate": 3.3333333333333333e-06,
|
15 |
+
"loss": 1.6756,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.013333333333333334,
|
20 |
+
"grad_norm": 2.21212674396317,
|
21 |
+
"learning_rate": 6.666666666666667e-06,
|
22 |
+
"loss": 1.7119,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.02666666666666667,
|
27 |
+
"grad_norm": 1.052610355531555,
|
28 |
+
"learning_rate": 1.3333333333333333e-05,
|
29 |
+
"loss": 1.5794,
|
30 |
+
"step": 4
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.04,
|
34 |
+
"grad_norm": 0.40843681896688516,
|
35 |
+
"learning_rate": 2e-05,
|
36 |
+
"loss": 1.406,
|
37 |
+
"step": 6
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.05333333333333334,
|
41 |
+
"grad_norm": 0.5064473426489812,
|
42 |
+
"learning_rate": 2.6666666666666667e-05,
|
43 |
+
"loss": 1.3868,
|
44 |
+
"step": 8
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.06666666666666667,
|
48 |
+
"grad_norm": 3.3113519775496347,
|
49 |
+
"learning_rate": 3.3333333333333335e-05,
|
50 |
+
"loss": 1.5195,
|
51 |
+
"step": 10
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.08,
|
55 |
+
"grad_norm": 0.3604597146473128,
|
56 |
+
"learning_rate": 4e-05,
|
57 |
+
"loss": 1.3777,
|
58 |
+
"step": 12
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.09333333333333334,
|
62 |
+
"grad_norm": 0.23235777614167963,
|
63 |
+
"learning_rate": 4.666666666666667e-05,
|
64 |
+
"loss": 1.2747,
|
65 |
+
"step": 14
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.10666666666666667,
|
69 |
+
"grad_norm": 0.24107331430994436,
|
70 |
+
"learning_rate": 5.333333333333333e-05,
|
71 |
+
"loss": 1.2307,
|
72 |
+
"step": 16
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.12,
|
76 |
+
"grad_norm": 0.19828951527897512,
|
77 |
+
"learning_rate": 6e-05,
|
78 |
+
"loss": 1.2127,
|
79 |
+
"step": 18
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.13333333333333333,
|
83 |
+
"grad_norm": 0.12945101422872216,
|
84 |
+
"learning_rate": 6.666666666666667e-05,
|
85 |
+
"loss": 1.2027,
|
86 |
+
"step": 20
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.14666666666666667,
|
90 |
+
"grad_norm": 0.12079427155353203,
|
91 |
+
"learning_rate": 7.333333333333333e-05,
|
92 |
+
"loss": 1.165,
|
93 |
+
"step": 22
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.16,
|
97 |
+
"grad_norm": 0.11223243327491182,
|
98 |
+
"learning_rate": 8e-05,
|
99 |
+
"loss": 1.1332,
|
100 |
+
"step": 24
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.17333333333333334,
|
104 |
+
"grad_norm": 0.11700825567943814,
|
105 |
+
"learning_rate": 8.666666666666667e-05,
|
106 |
+
"loss": 1.1353,
|
107 |
+
"step": 26
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.18666666666666668,
|
111 |
+
"grad_norm": 0.10577860008538974,
|
112 |
+
"learning_rate": 9.333333333333334e-05,
|
113 |
+
"loss": 1.1126,
|
114 |
+
"step": 28
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.2,
|
118 |
+
"grad_norm": 0.08770959641951533,
|
119 |
+
"learning_rate": 0.0001,
|
120 |
+
"loss": 1.116,
|
121 |
+
"step": 30
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.21333333333333335,
|
125 |
+
"grad_norm": 0.08173970603071407,
|
126 |
+
"learning_rate": 9.999696229471716e-05,
|
127 |
+
"loss": 1.09,
|
128 |
+
"step": 32
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.22666666666666666,
|
132 |
+
"grad_norm": 0.07804539860851849,
|
133 |
+
"learning_rate": 9.998784954797474e-05,
|
134 |
+
"loss": 1.0622,
|
135 |
+
"step": 34
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.24,
|
139 |
+
"grad_norm": 0.07305109208219707,
|
140 |
+
"learning_rate": 9.997266286704631e-05,
|
141 |
+
"loss": 1.0522,
|
142 |
+
"step": 36
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.25333333333333335,
|
146 |
+
"grad_norm": 0.08178925315694836,
|
147 |
+
"learning_rate": 9.99514040972383e-05,
|
148 |
+
"loss": 1.0539,
|
149 |
+
"step": 38
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.26666666666666666,
|
153 |
+
"grad_norm": 0.07827810776223704,
|
154 |
+
"learning_rate": 9.992407582166581e-05,
|
155 |
+
"loss": 1.0715,
|
156 |
+
"step": 40
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.28,
|
160 |
+
"grad_norm": 0.0844202707800422,
|
161 |
+
"learning_rate": 9.989068136093873e-05,
|
162 |
+
"loss": 1.0274,
|
163 |
+
"step": 42
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.29333333333333333,
|
167 |
+
"grad_norm": 0.06818226761844356,
|
168 |
+
"learning_rate": 9.985122477275824e-05,
|
169 |
+
"loss": 1.0338,
|
170 |
+
"step": 44
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.30666666666666664,
|
174 |
+
"grad_norm": 0.07583484586118773,
|
175 |
+
"learning_rate": 9.980571085142381e-05,
|
176 |
+
"loss": 1.0323,
|
177 |
+
"step": 46
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.32,
|
181 |
+
"grad_norm": 0.0755020533085722,
|
182 |
+
"learning_rate": 9.975414512725057e-05,
|
183 |
+
"loss": 1.015,
|
184 |
+
"step": 48
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.3333333333333333,
|
188 |
+
"grad_norm": 0.08406998549299528,
|
189 |
+
"learning_rate": 9.969653386589748e-05,
|
190 |
+
"loss": 0.9656,
|
191 |
+
"step": 50
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.3466666666666667,
|
195 |
+
"grad_norm": 0.07101342121045431,
|
196 |
+
"learning_rate": 9.963288406760582e-05,
|
197 |
+
"loss": 0.9657,
|
198 |
+
"step": 52
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.36,
|
202 |
+
"grad_norm": 0.07417386295183337,
|
203 |
+
"learning_rate": 9.956320346634876e-05,
|
204 |
+
"loss": 0.9937,
|
205 |
+
"step": 54
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.37333333333333335,
|
209 |
+
"grad_norm": 0.07154338853868397,
|
210 |
+
"learning_rate": 9.94875005288915e-05,
|
211 |
+
"loss": 0.9589,
|
212 |
+
"step": 56
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.38666666666666666,
|
216 |
+
"grad_norm": 0.07218740352233513,
|
217 |
+
"learning_rate": 9.940578445376258e-05,
|
218 |
+
"loss": 0.9685,
|
219 |
+
"step": 58
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.4,
|
223 |
+
"grad_norm": 0.07100653973675006,
|
224 |
+
"learning_rate": 9.931806517013612e-05,
|
225 |
+
"loss": 0.9573,
|
226 |
+
"step": 60
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.41333333333333333,
|
230 |
+
"grad_norm": 0.06711082249359601,
|
231 |
+
"learning_rate": 9.922435333662536e-05,
|
232 |
+
"loss": 0.9364,
|
233 |
+
"step": 62
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.4266666666666667,
|
237 |
+
"grad_norm": 0.07153154856840055,
|
238 |
+
"learning_rate": 9.912466033998757e-05,
|
239 |
+
"loss": 0.9374,
|
240 |
+
"step": 64
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.44,
|
244 |
+
"grad_norm": 0.06963514347132123,
|
245 |
+
"learning_rate": 9.901899829374047e-05,
|
246 |
+
"loss": 0.9663,
|
247 |
+
"step": 66
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.4533333333333333,
|
251 |
+
"grad_norm": 0.0659376914599576,
|
252 |
+
"learning_rate": 9.890738003669029e-05,
|
253 |
+
"loss": 0.9108,
|
254 |
+
"step": 68
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.4666666666666667,
|
258 |
+
"grad_norm": 0.06958378585339599,
|
259 |
+
"learning_rate": 9.878981913137179e-05,
|
260 |
+
"loss": 0.903,
|
261 |
+
"step": 70
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.48,
|
265 |
+
"grad_norm": 0.0764469187644936,
|
266 |
+
"learning_rate": 9.86663298624003e-05,
|
267 |
+
"loss": 0.9008,
|
268 |
+
"step": 72
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.49333333333333335,
|
272 |
+
"grad_norm": 0.07709623493461817,
|
273 |
+
"learning_rate": 9.8536927234736e-05,
|
274 |
+
"loss": 0.9305,
|
275 |
+
"step": 74
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.5066666666666667,
|
279 |
+
"grad_norm": 0.06882033015566792,
|
280 |
+
"learning_rate": 9.840162697186075e-05,
|
281 |
+
"loss": 0.9153,
|
282 |
+
"step": 76
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.52,
|
286 |
+
"grad_norm": 0.06984284125927373,
|
287 |
+
"learning_rate": 9.826044551386744e-05,
|
288 |
+
"loss": 0.8861,
|
289 |
+
"step": 78
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.5333333333333333,
|
293 |
+
"grad_norm": 11.87344671430505,
|
294 |
+
"learning_rate": 9.811340001546251e-05,
|
295 |
+
"loss": 0.8805,
|
296 |
+
"step": 80
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.5466666666666666,
|
300 |
+
"grad_norm": 0.07471362876432724,
|
301 |
+
"learning_rate": 9.796050834388149e-05,
|
302 |
+
"loss": 0.8571,
|
303 |
+
"step": 82
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.56,
|
307 |
+
"grad_norm": 0.20377795789303127,
|
308 |
+
"learning_rate": 9.780178907671789e-05,
|
309 |
+
"loss": 0.8725,
|
310 |
+
"step": 84
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.5733333333333334,
|
314 |
+
"grad_norm": 0.09817542250054903,
|
315 |
+
"learning_rate": 9.763726149966596e-05,
|
316 |
+
"loss": 0.8883,
|
317 |
+
"step": 86
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.5866666666666667,
|
321 |
+
"grad_norm": 0.10979752851172697,
|
322 |
+
"learning_rate": 9.746694560417731e-05,
|
323 |
+
"loss": 0.8708,
|
324 |
+
"step": 88
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.6,
|
328 |
+
"grad_norm": 0.09854482601183034,
|
329 |
+
"learning_rate": 9.729086208503174e-05,
|
330 |
+
"loss": 0.8883,
|
331 |
+
"step": 90
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.6133333333333333,
|
335 |
+
"grad_norm": 0.08153129504069773,
|
336 |
+
"learning_rate": 9.710903233782272e-05,
|
337 |
+
"loss": 0.8385,
|
338 |
+
"step": 92
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.6266666666666667,
|
342 |
+
"grad_norm": 0.07933734102384941,
|
343 |
+
"learning_rate": 9.692147845635761e-05,
|
344 |
+
"loss": 0.8658,
|
345 |
+
"step": 94
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.64,
|
349 |
+
"grad_norm": 0.08703768235227666,
|
350 |
+
"learning_rate": 9.672822322997305e-05,
|
351 |
+
"loss": 0.8314,
|
352 |
+
"step": 96
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.6533333333333333,
|
356 |
+
"grad_norm": 0.07185119301522967,
|
357 |
+
"learning_rate": 9.652929014076593e-05,
|
358 |
+
"loss": 0.7829,
|
359 |
+
"step": 98
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.6666666666666666,
|
363 |
+
"grad_norm": 0.08362387977855704,
|
364 |
+
"learning_rate": 9.632470336074009e-05,
|
365 |
+
"loss": 0.7932,
|
366 |
+
"step": 100
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.68,
|
370 |
+
"grad_norm": 0.07857330769987199,
|
371 |
+
"learning_rate": 9.611448774886924e-05,
|
372 |
+
"loss": 0.8094,
|
373 |
+
"step": 102
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.6933333333333334,
|
377 |
+
"grad_norm": 0.07470080527568211,
|
378 |
+
"learning_rate": 9.589866884807635e-05,
|
379 |
+
"loss": 0.8153,
|
380 |
+
"step": 104
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.7066666666666667,
|
384 |
+
"grad_norm": 0.07991307787992707,
|
385 |
+
"learning_rate": 9.567727288213005e-05,
|
386 |
+
"loss": 0.7736,
|
387 |
+
"step": 106
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.72,
|
391 |
+
"grad_norm": 0.0733968002848949,
|
392 |
+
"learning_rate": 9.545032675245813e-05,
|
393 |
+
"loss": 0.78,
|
394 |
+
"step": 108
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.7333333333333333,
|
398 |
+
"grad_norm": 0.07751184405863311,
|
399 |
+
"learning_rate": 9.521785803487889e-05,
|
400 |
+
"loss": 0.7959,
|
401 |
+
"step": 110
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.7466666666666667,
|
405 |
+
"grad_norm": 0.08355612624474511,
|
406 |
+
"learning_rate": 9.497989497625035e-05,
|
407 |
+
"loss": 0.7751,
|
408 |
+
"step": 112
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.76,
|
412 |
+
"grad_norm": 0.0929055766139149,
|
413 |
+
"learning_rate": 9.473646649103818e-05,
|
414 |
+
"loss": 0.7848,
|
415 |
+
"step": 114
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.7733333333333333,
|
419 |
+
"grad_norm": 0.09585556290161484,
|
420 |
+
"learning_rate": 9.448760215780217e-05,
|
421 |
+
"loss": 0.7786,
|
422 |
+
"step": 116
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.7866666666666666,
|
426 |
+
"grad_norm": 0.0836807061462442,
|
427 |
+
"learning_rate": 9.42333322156023e-05,
|
428 |
+
"loss": 0.7334,
|
429 |
+
"step": 118
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.8,
|
433 |
+
"grad_norm": 0.07708063741525999,
|
434 |
+
"learning_rate": 9.397368756032445e-05,
|
435 |
+
"loss": 0.7602,
|
436 |
+
"step": 120
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.8133333333333334,
|
440 |
+
"grad_norm": 1.0840349168421557,
|
441 |
+
"learning_rate": 9.370869974092629e-05,
|
442 |
+
"loss": 0.7948,
|
443 |
+
"step": 122
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.8266666666666667,
|
447 |
+
"grad_norm": 0.6248060432126027,
|
448 |
+
"learning_rate": 9.343840095560372e-05,
|
449 |
+
"loss": 0.7419,
|
450 |
+
"step": 124
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.84,
|
454 |
+
"grad_norm": 0.14470369129957764,
|
455 |
+
"learning_rate": 9.316282404787871e-05,
|
456 |
+
"loss": 0.7623,
|
457 |
+
"step": 126
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.8533333333333334,
|
461 |
+
"grad_norm": 0.131124623959581,
|
462 |
+
"learning_rate": 9.288200250260836e-05,
|
463 |
+
"loss": 0.7591,
|
464 |
+
"step": 128
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.8666666666666667,
|
468 |
+
"grad_norm": 0.11725616877030448,
|
469 |
+
"learning_rate": 9.259597044191636e-05,
|
470 |
+
"loss": 0.7409,
|
471 |
+
"step": 130
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.88,
|
475 |
+
"grad_norm": 0.12199467676115175,
|
476 |
+
"learning_rate": 9.230476262104677e-05,
|
477 |
+
"loss": 0.6848,
|
478 |
+
"step": 132
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.8933333333333333,
|
482 |
+
"grad_norm": 0.08692329616701802,
|
483 |
+
"learning_rate": 9.200841442414106e-05,
|
484 |
+
"loss": 0.7042,
|
485 |
+
"step": 134
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.9066666666666666,
|
489 |
+
"grad_norm": 0.07518959531670097,
|
490 |
+
"learning_rate": 9.17069618599385e-05,
|
491 |
+
"loss": 0.692,
|
492 |
+
"step": 136
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.92,
|
496 |
+
"grad_norm": 0.09269304556873778,
|
497 |
+
"learning_rate": 9.140044155740101e-05,
|
498 |
+
"loss": 0.719,
|
499 |
+
"step": 138
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.9333333333333333,
|
503 |
+
"grad_norm": 0.0794274462938484,
|
504 |
+
"learning_rate": 9.108889076126226e-05,
|
505 |
+
"loss": 0.7442,
|
506 |
+
"step": 140
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.9466666666666667,
|
510 |
+
"grad_norm": 0.07208605668488438,
|
511 |
+
"learning_rate": 9.077234732750224e-05,
|
512 |
+
"loss": 0.6918,
|
513 |
+
"step": 142
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.96,
|
517 |
+
"grad_norm": 0.08494128110838685,
|
518 |
+
"learning_rate": 9.045084971874738e-05,
|
519 |
+
"loss": 0.6942,
|
520 |
+
"step": 144
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.9733333333333334,
|
524 |
+
"grad_norm": 0.07966340996836804,
|
525 |
+
"learning_rate": 9.012443699959705e-05,
|
526 |
+
"loss": 0.6471,
|
527 |
+
"step": 146
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.9866666666666667,
|
531 |
+
"grad_norm": 0.07509382026953668,
|
532 |
+
"learning_rate": 8.979314883187693e-05,
|
533 |
+
"loss": 0.6641,
|
534 |
+
"step": 148
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.0,
|
538 |
+
"grad_norm": 0.09671488019621963,
|
539 |
+
"learning_rate": 8.945702546981969e-05,
|
540 |
+
"loss": 0.6563,
|
541 |
+
"step": 150
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.0133333333333334,
|
545 |
+
"grad_norm": 0.07306699627281733,
|
546 |
+
"learning_rate": 8.911610775517382e-05,
|
547 |
+
"loss": 0.4728,
|
548 |
+
"step": 152
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.0266666666666666,
|
552 |
+
"grad_norm": 0.07113580005854522,
|
553 |
+
"learning_rate": 8.877043711224108e-05,
|
554 |
+
"loss": 0.4537,
|
555 |
+
"step": 154
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.04,
|
559 |
+
"grad_norm": 0.08242409293384922,
|
560 |
+
"learning_rate": 8.842005554284296e-05,
|
561 |
+
"loss": 0.4754,
|
562 |
+
"step": 156
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.0533333333333332,
|
566 |
+
"grad_norm": 0.08558759822156714,
|
567 |
+
"learning_rate": 8.806500562121723e-05,
|
568 |
+
"loss": 0.4409,
|
569 |
+
"step": 158
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.0666666666666667,
|
573 |
+
"grad_norm": 0.08093797796678245,
|
574 |
+
"learning_rate": 8.770533048884482e-05,
|
575 |
+
"loss": 0.4629,
|
576 |
+
"step": 160
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.08,
|
580 |
+
"grad_norm": 0.07276419262446279,
|
581 |
+
"learning_rate": 8.73410738492077e-05,
|
582 |
+
"loss": 0.4509,
|
583 |
+
"step": 162
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.0933333333333333,
|
587 |
+
"grad_norm": 0.13007281279313135,
|
588 |
+
"learning_rate": 8.697227996247861e-05,
|
589 |
+
"loss": 0.4929,
|
590 |
+
"step": 164
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.1066666666666667,
|
594 |
+
"grad_norm": 0.08797907567452011,
|
595 |
+
"learning_rate": 8.659899364014309e-05,
|
596 |
+
"loss": 0.4567,
|
597 |
+
"step": 166
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.12,
|
601 |
+
"grad_norm": 0.08399912199961071,
|
602 |
+
"learning_rate": 8.622126023955446e-05,
|
603 |
+
"loss": 0.4561,
|
604 |
+
"step": 168
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.1333333333333333,
|
608 |
+
"grad_norm": 0.14999451040489625,
|
609 |
+
"learning_rate": 8.583912565842257e-05,
|
610 |
+
"loss": 0.461,
|
611 |
+
"step": 170
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.1466666666666667,
|
615 |
+
"grad_norm": 0.07239352221098809,
|
616 |
+
"learning_rate": 8.545263632923687e-05,
|
617 |
+
"loss": 0.4386,
|
618 |
+
"step": 172
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.16,
|
622 |
+
"grad_norm": 0.07274293681830099,
|
623 |
+
"learning_rate": 8.506183921362443e-05,
|
624 |
+
"loss": 0.425,
|
625 |
+
"step": 174
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.1733333333333333,
|
629 |
+
"grad_norm": 0.06567961209669387,
|
630 |
+
"learning_rate": 8.466678179664379e-05,
|
631 |
+
"loss": 0.4316,
|
632 |
+
"step": 176
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.1866666666666668,
|
636 |
+
"grad_norm": 0.06800506030151886,
|
637 |
+
"learning_rate": 8.4267512081015e-05,
|
638 |
+
"loss": 0.4262,
|
639 |
+
"step": 178
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.2,
|
643 |
+
"grad_norm": 0.06310710452459224,
|
644 |
+
"learning_rate": 8.386407858128706e-05,
|
645 |
+
"loss": 0.4393,
|
646 |
+
"step": 180
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.2133333333333334,
|
650 |
+
"grad_norm": 0.07077155581372561,
|
651 |
+
"learning_rate": 8.345653031794292e-05,
|
652 |
+
"loss": 0.4394,
|
653 |
+
"step": 182
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.2266666666666666,
|
657 |
+
"grad_norm": 0.06505271915956287,
|
658 |
+
"learning_rate": 8.304491681144306e-05,
|
659 |
+
"loss": 0.4486,
|
660 |
+
"step": 184
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.24,
|
664 |
+
"grad_norm": 0.059685754017888774,
|
665 |
+
"learning_rate": 8.262928807620843e-05,
|
666 |
+
"loss": 0.4449,
|
667 |
+
"step": 186
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.2533333333333334,
|
671 |
+
"grad_norm": 0.061596408555461855,
|
672 |
+
"learning_rate": 8.220969461454322e-05,
|
673 |
+
"loss": 0.4241,
|
674 |
+
"step": 188
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.2666666666666666,
|
678 |
+
"grad_norm": 0.06365147365999292,
|
679 |
+
"learning_rate": 8.178618741049842e-05,
|
680 |
+
"loss": 0.4516,
|
681 |
+
"step": 190
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.28,
|
685 |
+
"grad_norm": 0.06440909119431051,
|
686 |
+
"learning_rate": 8.135881792367686e-05,
|
687 |
+
"loss": 0.4047,
|
688 |
+
"step": 192
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.2933333333333334,
|
692 |
+
"grad_norm": 0.06734344900628648,
|
693 |
+
"learning_rate": 8.092763808298048e-05,
|
694 |
+
"loss": 0.4169,
|
695 |
+
"step": 194
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.3066666666666666,
|
699 |
+
"grad_norm": 0.05832916804134293,
|
700 |
+
"learning_rate": 8.049270028030046e-05,
|
701 |
+
"loss": 0.4313,
|
702 |
+
"step": 196
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.32,
|
706 |
+
"grad_norm": 0.060432835217476055,
|
707 |
+
"learning_rate": 8.005405736415126e-05,
|
708 |
+
"loss": 0.4181,
|
709 |
+
"step": 198
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.3333333333333333,
|
713 |
+
"grad_norm": 0.3189524387852971,
|
714 |
+
"learning_rate": 7.961176263324901e-05,
|
715 |
+
"loss": 0.4671,
|
716 |
+
"step": 200
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.3466666666666667,
|
720 |
+
"grad_norm": 0.0592761178725548,
|
721 |
+
"learning_rate": 7.916586983003533e-05,
|
722 |
+
"loss": 0.4399,
|
723 |
+
"step": 202
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.3599999999999999,
|
727 |
+
"grad_norm": 0.0709909293526123,
|
728 |
+
"learning_rate": 7.871643313414718e-05,
|
729 |
+
"loss": 0.4297,
|
730 |
+
"step": 204
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.3733333333333333,
|
734 |
+
"grad_norm": 0.06198999527057115,
|
735 |
+
"learning_rate": 7.82635071558336e-05,
|
736 |
+
"loss": 0.4251,
|
737 |
+
"step": 206
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.3866666666666667,
|
741 |
+
"grad_norm": 0.058077551229268935,
|
742 |
+
"learning_rate": 7.780714692932002e-05,
|
743 |
+
"loss": 0.4105,
|
744 |
+
"step": 208
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.4,
|
748 |
+
"grad_norm": 0.06776940923998968,
|
749 |
+
"learning_rate": 7.734740790612136e-05,
|
750 |
+
"loss": 0.4445,
|
751 |
+
"step": 210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.4133333333333333,
|
755 |
+
"grad_norm": 0.05980241043639003,
|
756 |
+
"learning_rate": 7.688434594830392e-05,
|
757 |
+
"loss": 0.4049,
|
758 |
+
"step": 212
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.4266666666666667,
|
762 |
+
"grad_norm": 0.06075570212356431,
|
763 |
+
"learning_rate": 7.641801732169795e-05,
|
764 |
+
"loss": 0.4049,
|
765 |
+
"step": 214
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.44,
|
769 |
+
"grad_norm": 0.0585436609373402,
|
770 |
+
"learning_rate": 7.594847868906076e-05,
|
771 |
+
"loss": 0.4265,
|
772 |
+
"step": 216
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.4533333333333334,
|
776 |
+
"grad_norm": 0.05886231084821202,
|
777 |
+
"learning_rate": 7.547578710319174e-05,
|
778 |
+
"loss": 0.4361,
|
779 |
+
"step": 218
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.4666666666666668,
|
783 |
+
"grad_norm": 0.05758877919907456,
|
784 |
+
"learning_rate": 7.500000000000001e-05,
|
785 |
+
"loss": 0.4273,
|
786 |
+
"step": 220
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.48,
|
790 |
+
"grad_norm": 0.057186857880065896,
|
791 |
+
"learning_rate": 7.452117519152542e-05,
|
792 |
+
"loss": 0.3918,
|
793 |
+
"step": 222
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.4933333333333334,
|
797 |
+
"grad_norm": 0.060986952045000244,
|
798 |
+
"learning_rate": 7.403937085891397e-05,
|
799 |
+
"loss": 0.4116,
|
800 |
+
"step": 224
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.5066666666666668,
|
804 |
+
"grad_norm": 0.06094291896870185,
|
805 |
+
"learning_rate": 7.355464554534837e-05,
|
806 |
+
"loss": 0.3968,
|
807 |
+
"step": 226
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.52,
|
811 |
+
"grad_norm": 0.058322590431556104,
|
812 |
+
"learning_rate": 7.30670581489344e-05,
|
813 |
+
"loss": 0.3876,
|
814 |
+
"step": 228
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.5333333333333332,
|
818 |
+
"grad_norm": 0.05822076237291155,
|
819 |
+
"learning_rate": 7.257666791554448e-05,
|
820 |
+
"loss": 0.4272,
|
821 |
+
"step": 230
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.5466666666666666,
|
825 |
+
"grad_norm": 0.055094265304100165,
|
826 |
+
"learning_rate": 7.20835344316187e-05,
|
827 |
+
"loss": 0.4133,
|
828 |
+
"step": 232
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.56,
|
832 |
+
"grad_norm": 0.06044900185707112,
|
833 |
+
"learning_rate": 7.158771761692464e-05,
|
834 |
+
"loss": 0.4061,
|
835 |
+
"step": 234
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.5733333333333333,
|
839 |
+
"grad_norm": 0.05589749063648132,
|
840 |
+
"learning_rate": 7.108927771727661e-05,
|
841 |
+
"loss": 0.407,
|
842 |
+
"step": 236
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.5866666666666667,
|
846 |
+
"grad_norm": 0.05920526918754276,
|
847 |
+
"learning_rate": 7.058827529721525e-05,
|
848 |
+
"loss": 0.3993,
|
849 |
+
"step": 238
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.6,
|
853 |
+
"grad_norm": 0.08772211610388515,
|
854 |
+
"learning_rate": 7.008477123264848e-05,
|
855 |
+
"loss": 0.4208,
|
856 |
+
"step": 240
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.6133333333333333,
|
860 |
+
"grad_norm": 0.05570158803300833,
|
861 |
+
"learning_rate": 6.957882670345458e-05,
|
862 |
+
"loss": 0.405,
|
863 |
+
"step": 242
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.6266666666666667,
|
867 |
+
"grad_norm": 0.06563516734346801,
|
868 |
+
"learning_rate": 6.90705031860483e-05,
|
869 |
+
"loss": 0.4098,
|
870 |
+
"step": 244
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.6400000000000001,
|
874 |
+
"grad_norm": 0.05631976426536162,
|
875 |
+
"learning_rate": 6.855986244591104e-05,
|
876 |
+
"loss": 0.3877,
|
877 |
+
"step": 246
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.6533333333333333,
|
881 |
+
"grad_norm": 0.05644442739953386,
|
882 |
+
"learning_rate": 6.804696653008575e-05,
|
883 |
+
"loss": 0.4134,
|
884 |
+
"step": 248
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.6666666666666665,
|
888 |
+
"grad_norm": 0.05275767947492662,
|
889 |
+
"learning_rate": 6.753187775963773e-05,
|
890 |
+
"loss": 0.4075,
|
891 |
+
"step": 250
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.6800000000000002,
|
895 |
+
"grad_norm": 0.05873640121915926,
|
896 |
+
"learning_rate": 6.701465872208216e-05,
|
897 |
+
"loss": 0.4103,
|
898 |
+
"step": 252
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.6933333333333334,
|
902 |
+
"grad_norm": 0.0596209632813038,
|
903 |
+
"learning_rate": 6.649537226377915e-05,
|
904 |
+
"loss": 0.4368,
|
905 |
+
"step": 254
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.7066666666666666,
|
909 |
+
"grad_norm": 0.0550209071778787,
|
910 |
+
"learning_rate": 6.59740814822974e-05,
|
911 |
+
"loss": 0.4079,
|
912 |
+
"step": 256
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.72,
|
916 |
+
"grad_norm": 0.056297483765733,
|
917 |
+
"learning_rate": 6.545084971874738e-05,
|
918 |
+
"loss": 0.441,
|
919 |
+
"step": 258
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.7333333333333334,
|
923 |
+
"grad_norm": 0.15265154617055526,
|
924 |
+
"learning_rate": 6.492574055008473e-05,
|
925 |
+
"loss": 0.4041,
|
926 |
+
"step": 260
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.7466666666666666,
|
930 |
+
"grad_norm": 0.07752909356786238,
|
931 |
+
"learning_rate": 6.439881778138531e-05,
|
932 |
+
"loss": 0.4041,
|
933 |
+
"step": 262
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.76,
|
937 |
+
"grad_norm": 0.08024865113518131,
|
938 |
+
"learning_rate": 6.387014543809223e-05,
|
939 |
+
"loss": 0.3986,
|
940 |
+
"step": 264
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.7733333333333334,
|
944 |
+
"grad_norm": 0.10615717597280923,
|
945 |
+
"learning_rate": 6.333978775823631e-05,
|
946 |
+
"loss": 0.4134,
|
947 |
+
"step": 266
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.7866666666666666,
|
951 |
+
"grad_norm": 0.06710384327076761,
|
952 |
+
"learning_rate": 6.280780918463057e-05,
|
953 |
+
"loss": 0.3705,
|
954 |
+
"step": 268
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.8,
|
958 |
+
"grad_norm": 0.0633674315054036,
|
959 |
+
"learning_rate": 6.227427435703997e-05,
|
960 |
+
"loss": 0.4157,
|
961 |
+
"step": 270
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.8133333333333335,
|
965 |
+
"grad_norm": 0.060851228058216876,
|
966 |
+
"learning_rate": 6.173924810432705e-05,
|
967 |
+
"loss": 0.4065,
|
968 |
+
"step": 272
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.8266666666666667,
|
972 |
+
"grad_norm": 0.058897518477155845,
|
973 |
+
"learning_rate": 6.12027954365748e-05,
|
974 |
+
"loss": 0.4019,
|
975 |
+
"step": 274
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.8399999999999999,
|
979 |
+
"grad_norm": 0.05632347613072352,
|
980 |
+
"learning_rate": 6.066498153718735e-05,
|
981 |
+
"loss": 0.4142,
|
982 |
+
"step": 276
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.8533333333333335,
|
986 |
+
"grad_norm": 0.05684584086680513,
|
987 |
+
"learning_rate": 6.012587175496961e-05,
|
988 |
+
"loss": 0.4019,
|
989 |
+
"step": 278
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.8666666666666667,
|
993 |
+
"grad_norm": 0.054019444337334764,
|
994 |
+
"learning_rate": 5.958553159618693e-05,
|
995 |
+
"loss": 0.4006,
|
996 |
+
"step": 280
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.88,
|
1000 |
+
"grad_norm": 0.05665016004137828,
|
1001 |
+
"learning_rate": 5.90440267166055e-05,
|
1002 |
+
"loss": 0.411,
|
1003 |
+
"step": 282
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.8933333333333333,
|
1007 |
+
"grad_norm": 0.057316286082019274,
|
1008 |
+
"learning_rate": 5.850142291351466e-05,
|
1009 |
+
"loss": 0.4085,
|
1010 |
+
"step": 284
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.9066666666666667,
|
1014 |
+
"grad_norm": 0.08470811257422295,
|
1015 |
+
"learning_rate": 5.795778611773197e-05,
|
1016 |
+
"loss": 0.3819,
|
1017 |
+
"step": 286
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.92,
|
1021 |
+
"grad_norm": 0.05784580025752463,
|
1022 |
+
"learning_rate": 5.74131823855921e-05,
|
1023 |
+
"loss": 0.3821,
|
1024 |
+
"step": 288
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.9333333333333333,
|
1028 |
+
"grad_norm": 0.05663311823528816,
|
1029 |
+
"learning_rate": 5.686767789092041e-05,
|
1030 |
+
"loss": 0.4154,
|
1031 |
+
"step": 290
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.9466666666666668,
|
1035 |
+
"grad_norm": 0.057073777066581295,
|
1036 |
+
"learning_rate": 5.6321338916992315e-05,
|
1037 |
+
"loss": 0.4135,
|
1038 |
+
"step": 292
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.96,
|
1042 |
+
"grad_norm": 0.0574979098693646,
|
1043 |
+
"learning_rate": 5.577423184847932e-05,
|
1044 |
+
"loss": 0.408,
|
1045 |
+
"step": 294
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.9733333333333334,
|
1049 |
+
"grad_norm": 0.05504450544637458,
|
1050 |
+
"learning_rate": 5.522642316338268e-05,
|
1051 |
+
"loss": 0.4034,
|
1052 |
+
"step": 296
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.9866666666666668,
|
1056 |
+
"grad_norm": 0.057266688427656184,
|
1057 |
+
"learning_rate": 5.467797942495589e-05,
|
1058 |
+
"loss": 0.3741,
|
1059 |
+
"step": 298
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.0,
|
1063 |
+
"grad_norm": 0.05613792113707641,
|
1064 |
+
"learning_rate": 5.4128967273616625e-05,
|
1065 |
+
"loss": 0.3944,
|
1066 |
+
"step": 300
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.013333333333333,
|
1070 |
+
"grad_norm": 0.07519534578570336,
|
1071 |
+
"learning_rate": 5.357945341884936e-05,
|
1072 |
+
"loss": 0.2236,
|
1073 |
+
"step": 302
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 2.026666666666667,
|
1077 |
+
"grad_norm": 0.18176383216046363,
|
1078 |
+
"learning_rate": 5.3029504631099694e-05,
|
1079 |
+
"loss": 0.2312,
|
1080 |
+
"step": 304
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 2.04,
|
1084 |
+
"grad_norm": 0.0608749623913546,
|
1085 |
+
"learning_rate": 5.247918773366112e-05,
|
1086 |
+
"loss": 0.2194,
|
1087 |
+
"step": 306
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 2.0533333333333332,
|
1091 |
+
"grad_norm": 0.06549466194373386,
|
1092 |
+
"learning_rate": 5.1928569594555524e-05,
|
1093 |
+
"loss": 0.2038,
|
1094 |
+
"step": 308
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 2.066666666666667,
|
1098 |
+
"grad_norm": 0.06841206457163714,
|
1099 |
+
"learning_rate": 5.1377717118408105e-05,
|
1100 |
+
"loss": 0.2103,
|
1101 |
+
"step": 310
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 2.08,
|
1105 |
+
"grad_norm": 0.06431960601426534,
|
1106 |
+
"learning_rate": 5.0826697238317935e-05,
|
1107 |
+
"loss": 0.1899,
|
1108 |
+
"step": 312
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.0933333333333333,
|
1112 |
+
"grad_norm": 0.061164578906699046,
|
1113 |
+
"learning_rate": 5.027557690772503e-05,
|
1114 |
+
"loss": 0.1955,
|
1115 |
+
"step": 314
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.1066666666666665,
|
1119 |
+
"grad_norm": 0.05806737719217297,
|
1120 |
+
"learning_rate": 4.972442309227498e-05,
|
1121 |
+
"loss": 0.1871,
|
1122 |
+
"step": 316
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.12,
|
1126 |
+
"grad_norm": 0.10638328645893626,
|
1127 |
+
"learning_rate": 4.917330276168208e-05,
|
1128 |
+
"loss": 0.1926,
|
1129 |
+
"step": 318
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.1333333333333333,
|
1133 |
+
"grad_norm": 0.055513863609778974,
|
1134 |
+
"learning_rate": 4.8622282881591906e-05,
|
1135 |
+
"loss": 0.2008,
|
1136 |
+
"step": 320
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.1466666666666665,
|
1140 |
+
"grad_norm": 0.05781185580562024,
|
1141 |
+
"learning_rate": 4.8071430405444474e-05,
|
1142 |
+
"loss": 0.2001,
|
1143 |
+
"step": 322
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.16,
|
1147 |
+
"grad_norm": 0.058407688794793834,
|
1148 |
+
"learning_rate": 4.7520812266338885e-05,
|
1149 |
+
"loss": 0.2091,
|
1150 |
+
"step": 324
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.1733333333333333,
|
1154 |
+
"grad_norm": 0.05455993945014677,
|
1155 |
+
"learning_rate": 4.697049536890033e-05,
|
1156 |
+
"loss": 0.1943,
|
1157 |
+
"step": 326
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.1866666666666665,
|
1161 |
+
"grad_norm": 0.10418377423186777,
|
1162 |
+
"learning_rate": 4.642054658115067e-05,
|
1163 |
+
"loss": 0.2101,
|
1164 |
+
"step": 328
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.2,
|
1168 |
+
"grad_norm": 0.058762085061184646,
|
1169 |
+
"learning_rate": 4.5871032726383386e-05,
|
1170 |
+
"loss": 0.199,
|
1171 |
+
"step": 330
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.2133333333333334,
|
1175 |
+
"grad_norm": 0.05961716033762566,
|
1176 |
+
"learning_rate": 4.5322020575044114e-05,
|
1177 |
+
"loss": 0.1945,
|
1178 |
+
"step": 332
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.2266666666666666,
|
1182 |
+
"grad_norm": 0.06064491694409506,
|
1183 |
+
"learning_rate": 4.477357683661734e-05,
|
1184 |
+
"loss": 0.2023,
|
1185 |
+
"step": 334
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.24,
|
1189 |
+
"grad_norm": 0.12224153955185721,
|
1190 |
+
"learning_rate": 4.4225768151520694e-05,
|
1191 |
+
"loss": 0.2372,
|
1192 |
+
"step": 336
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 2.2533333333333334,
|
1196 |
+
"grad_norm": 0.06273415054348162,
|
1197 |
+
"learning_rate": 4.367866108300769e-05,
|
1198 |
+
"loss": 0.202,
|
1199 |
+
"step": 338
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 2.2666666666666666,
|
1203 |
+
"grad_norm": 0.05439313011616356,
|
1204 |
+
"learning_rate": 4.3132322109079596e-05,
|
1205 |
+
"loss": 0.1838,
|
1206 |
+
"step": 340
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 2.2800000000000002,
|
1210 |
+
"grad_norm": 0.05408796882713708,
|
1211 |
+
"learning_rate": 4.2586817614407895e-05,
|
1212 |
+
"loss": 0.2041,
|
1213 |
+
"step": 342
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 2.2933333333333334,
|
1217 |
+
"grad_norm": 0.14961779038669223,
|
1218 |
+
"learning_rate": 4.2042213882268025e-05,
|
1219 |
+
"loss": 0.217,
|
1220 |
+
"step": 344
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.3066666666666666,
|
1224 |
+
"grad_norm": 0.06357828772862752,
|
1225 |
+
"learning_rate": 4.149857708648536e-05,
|
1226 |
+
"loss": 0.2003,
|
1227 |
+
"step": 346
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 2.32,
|
1231 |
+
"grad_norm": 0.054464894143134636,
|
1232 |
+
"learning_rate": 4.095597328339452e-05,
|
1233 |
+
"loss": 0.1909,
|
1234 |
+
"step": 348
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 2.3333333333333335,
|
1238 |
+
"grad_norm": 0.066782998686637,
|
1239 |
+
"learning_rate": 4.0414468403813095e-05,
|
1240 |
+
"loss": 0.205,
|
1241 |
+
"step": 350
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 2.3466666666666667,
|
1245 |
+
"grad_norm": 0.10946146387161931,
|
1246 |
+
"learning_rate": 3.9874128245030404e-05,
|
1247 |
+
"loss": 0.204,
|
1248 |
+
"step": 352
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 2.36,
|
1252 |
+
"grad_norm": 0.09072556796395603,
|
1253 |
+
"learning_rate": 3.933501846281267e-05,
|
1254 |
+
"loss": 0.2021,
|
1255 |
+
"step": 354
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 2.3733333333333335,
|
1259 |
+
"grad_norm": 0.08641355840276257,
|
1260 |
+
"learning_rate": 3.879720456342521e-05,
|
1261 |
+
"loss": 0.2204,
|
1262 |
+
"step": 356
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 2.3866666666666667,
|
1266 |
+
"grad_norm": 0.0733857764459229,
|
1267 |
+
"learning_rate": 3.826075189567296e-05,
|
1268 |
+
"loss": 0.2012,
|
1269 |
+
"step": 358
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.4,
|
1273 |
+
"grad_norm": 0.0626333235413589,
|
1274 |
+
"learning_rate": 3.772572564296005e-05,
|
1275 |
+
"loss": 0.2053,
|
1276 |
+
"step": 360
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.413333333333333,
|
1280 |
+
"grad_norm": 0.06594691744680978,
|
1281 |
+
"learning_rate": 3.719219081536942e-05,
|
1282 |
+
"loss": 0.1971,
|
1283 |
+
"step": 362
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 2.4266666666666667,
|
1287 |
+
"grad_norm": 0.06571408902511346,
|
1288 |
+
"learning_rate": 3.666021224176369e-05,
|
1289 |
+
"loss": 0.1977,
|
1290 |
+
"step": 364
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 2.44,
|
1294 |
+
"grad_norm": 0.0890355148563959,
|
1295 |
+
"learning_rate": 3.612985456190778e-05,
|
1296 |
+
"loss": 0.1974,
|
1297 |
+
"step": 366
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 2.453333333333333,
|
1301 |
+
"grad_norm": 0.05984188182013961,
|
1302 |
+
"learning_rate": 3.56011822186147e-05,
|
1303 |
+
"loss": 0.2045,
|
1304 |
+
"step": 368
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.466666666666667,
|
1308 |
+
"grad_norm": 0.05840811324090727,
|
1309 |
+
"learning_rate": 3.5074259449915284e-05,
|
1310 |
+
"loss": 0.1971,
|
1311 |
+
"step": 370
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 2.48,
|
1315 |
+
"grad_norm": 0.05496682361577455,
|
1316 |
+
"learning_rate": 3.4549150281252636e-05,
|
1317 |
+
"loss": 0.2088,
|
1318 |
+
"step": 372
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 2.493333333333333,
|
1322 |
+
"grad_norm": 0.056504022577883756,
|
1323 |
+
"learning_rate": 3.40259185177026e-05,
|
1324 |
+
"loss": 0.2017,
|
1325 |
+
"step": 374
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 2.506666666666667,
|
1329 |
+
"grad_norm": 0.06329898582468307,
|
1330 |
+
"learning_rate": 3.350462773622086e-05,
|
1331 |
+
"loss": 0.2064,
|
1332 |
+
"step": 376
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 2.52,
|
1336 |
+
"grad_norm": 0.05916890402008683,
|
1337 |
+
"learning_rate": 3.298534127791785e-05,
|
1338 |
+
"loss": 0.211,
|
1339 |
+
"step": 378
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 2.533333333333333,
|
1343 |
+
"grad_norm": 0.05979626765953065,
|
1344 |
+
"learning_rate": 3.2468122240362284e-05,
|
1345 |
+
"loss": 0.2044,
|
1346 |
+
"step": 380
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 2.546666666666667,
|
1350 |
+
"grad_norm": 0.06045023498620747,
|
1351 |
+
"learning_rate": 3.1953033469914276e-05,
|
1352 |
+
"loss": 0.2074,
|
1353 |
+
"step": 382
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 2.56,
|
1357 |
+
"grad_norm": 0.06281675933045895,
|
1358 |
+
"learning_rate": 3.144013755408895e-05,
|
1359 |
+
"loss": 0.2146,
|
1360 |
+
"step": 384
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 2.5733333333333333,
|
1364 |
+
"grad_norm": 0.07056631468249065,
|
1365 |
+
"learning_rate": 3.0929496813951694e-05,
|
1366 |
+
"loss": 0.1853,
|
1367 |
+
"step": 386
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 2.586666666666667,
|
1371 |
+
"grad_norm": 0.06942161032122679,
|
1372 |
+
"learning_rate": 3.042117329654544e-05,
|
1373 |
+
"loss": 0.1916,
|
1374 |
+
"step": 388
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.6,
|
1378 |
+
"grad_norm": 0.06027569169276504,
|
1379 |
+
"learning_rate": 2.991522876735154e-05,
|
1380 |
+
"loss": 0.1946,
|
1381 |
+
"step": 390
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.6133333333333333,
|
1385 |
+
"grad_norm": 0.05374331020259679,
|
1386 |
+
"learning_rate": 2.9411724702784758e-05,
|
1387 |
+
"loss": 0.1948,
|
1388 |
+
"step": 392
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.626666666666667,
|
1392 |
+
"grad_norm": 0.0542758123431381,
|
1393 |
+
"learning_rate": 2.89107222827234e-05,
|
1394 |
+
"loss": 0.1912,
|
1395 |
+
"step": 394
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.64,
|
1399 |
+
"grad_norm": 0.0571540947080613,
|
1400 |
+
"learning_rate": 2.8412282383075363e-05,
|
1401 |
+
"loss": 0.1984,
|
1402 |
+
"step": 396
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 2.6533333333333333,
|
1406 |
+
"grad_norm": 0.05627882046395902,
|
1407 |
+
"learning_rate": 2.79164655683813e-05,
|
1408 |
+
"loss": 0.2158,
|
1409 |
+
"step": 398
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 2.6666666666666665,
|
1413 |
+
"grad_norm": 0.05259956524533675,
|
1414 |
+
"learning_rate": 2.7423332084455544e-05,
|
1415 |
+
"loss": 0.1747,
|
1416 |
+
"step": 400
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 2.68,
|
1420 |
+
"grad_norm": 0.05093786217012115,
|
1421 |
+
"learning_rate": 2.693294185106562e-05,
|
1422 |
+
"loss": 0.2026,
|
1423 |
+
"step": 402
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 2.6933333333333334,
|
1427 |
+
"grad_norm": 0.05277547570213214,
|
1428 |
+
"learning_rate": 2.644535445465164e-05,
|
1429 |
+
"loss": 0.1813,
|
1430 |
+
"step": 404
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 2.7066666666666666,
|
1434 |
+
"grad_norm": 0.05303823378689789,
|
1435 |
+
"learning_rate": 2.5960629141086012e-05,
|
1436 |
+
"loss": 0.1819,
|
1437 |
+
"step": 406
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 2.7199999999999998,
|
1441 |
+
"grad_norm": 0.08344410667249319,
|
1442 |
+
"learning_rate": 2.547882480847461e-05,
|
1443 |
+
"loss": 0.2231,
|
1444 |
+
"step": 408
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 2.7333333333333334,
|
1448 |
+
"grad_norm": 0.05610742314142284,
|
1449 |
+
"learning_rate": 2.500000000000001e-05,
|
1450 |
+
"loss": 0.1906,
|
1451 |
+
"step": 410
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.7466666666666666,
|
1455 |
+
"grad_norm": 0.05772628938455535,
|
1456 |
+
"learning_rate": 2.4524212896808263e-05,
|
1457 |
+
"loss": 0.1994,
|
1458 |
+
"step": 412
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 2.76,
|
1462 |
+
"grad_norm": 0.05103502451047731,
|
1463 |
+
"learning_rate": 2.405152131093926e-05,
|
1464 |
+
"loss": 0.1798,
|
1465 |
+
"step": 414
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.7733333333333334,
|
1469 |
+
"grad_norm": 0.05325999726886616,
|
1470 |
+
"learning_rate": 2.3581982678302063e-05,
|
1471 |
+
"loss": 0.1914,
|
1472 |
+
"step": 416
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.7866666666666666,
|
1476 |
+
"grad_norm": 0.059490514144748714,
|
1477 |
+
"learning_rate": 2.3115654051696095e-05,
|
1478 |
+
"loss": 0.1951,
|
1479 |
+
"step": 418
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 2.8,
|
1483 |
+
"grad_norm": 0.04984418568151086,
|
1484 |
+
"learning_rate": 2.2652592093878666e-05,
|
1485 |
+
"loss": 0.1808,
|
1486 |
+
"step": 420
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 2.8133333333333335,
|
1490 |
+
"grad_norm": 0.05810409569821001,
|
1491 |
+
"learning_rate": 2.219285307067997e-05,
|
1492 |
+
"loss": 0.203,
|
1493 |
+
"step": 422
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.8266666666666667,
|
1497 |
+
"grad_norm": 0.06033075206383965,
|
1498 |
+
"learning_rate": 2.1736492844166407e-05,
|
1499 |
+
"loss": 0.2046,
|
1500 |
+
"step": 424
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 2.84,
|
1504 |
+
"grad_norm": 0.05658423500567751,
|
1505 |
+
"learning_rate": 2.128356686585282e-05,
|
1506 |
+
"loss": 0.1889,
|
1507 |
+
"step": 426
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 2.8533333333333335,
|
1511 |
+
"grad_norm": 0.05504606313698527,
|
1512 |
+
"learning_rate": 2.0834130169964692e-05,
|
1513 |
+
"loss": 0.2025,
|
1514 |
+
"step": 428
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.8666666666666667,
|
1518 |
+
"grad_norm": 0.05661096276616458,
|
1519 |
+
"learning_rate": 2.0388237366751006e-05,
|
1520 |
+
"loss": 0.2063,
|
1521 |
+
"step": 430
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 2.88,
|
1525 |
+
"grad_norm": 0.0491417808278452,
|
1526 |
+
"learning_rate": 1.9945942635848748e-05,
|
1527 |
+
"loss": 0.1878,
|
1528 |
+
"step": 432
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 2.8933333333333335,
|
1532 |
+
"grad_norm": 0.05320288379451015,
|
1533 |
+
"learning_rate": 1.950729971969955e-05,
|
1534 |
+
"loss": 0.1934,
|
1535 |
+
"step": 434
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.9066666666666667,
|
1539 |
+
"grad_norm": 0.06582732049676977,
|
1540 |
+
"learning_rate": 1.9072361917019536e-05,
|
1541 |
+
"loss": 0.1912,
|
1542 |
+
"step": 436
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 2.92,
|
1546 |
+
"grad_norm": 0.05333512123441002,
|
1547 |
+
"learning_rate": 1.8641182076323148e-05,
|
1548 |
+
"loss": 0.2072,
|
1549 |
+
"step": 438
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.9333333333333336,
|
1553 |
+
"grad_norm": 0.05868667850689424,
|
1554 |
+
"learning_rate": 1.821381258950161e-05,
|
1555 |
+
"loss": 0.206,
|
1556 |
+
"step": 440
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.9466666666666668,
|
1560 |
+
"grad_norm": 0.05637285498837677,
|
1561 |
+
"learning_rate": 1.7790305385456795e-05,
|
1562 |
+
"loss": 0.1879,
|
1563 |
+
"step": 442
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.96,
|
1567 |
+
"grad_norm": 0.05386393235541858,
|
1568 |
+
"learning_rate": 1.7370711923791567e-05,
|
1569 |
+
"loss": 0.1958,
|
1570 |
+
"step": 444
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 2.9733333333333336,
|
1574 |
+
"grad_norm": 0.05299769413689916,
|
1575 |
+
"learning_rate": 1.6955083188556947e-05,
|
1576 |
+
"loss": 0.1925,
|
1577 |
+
"step": 446
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 2.986666666666667,
|
1581 |
+
"grad_norm": 0.05133518316661849,
|
1582 |
+
"learning_rate": 1.6543469682057106e-05,
|
1583 |
+
"loss": 0.1915,
|
1584 |
+
"step": 448
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 3.0,
|
1588 |
+
"grad_norm": 0.04885194532692743,
|
1589 |
+
"learning_rate": 1.6135921418712956e-05,
|
1590 |
+
"loss": 0.1739,
|
1591 |
+
"step": 450
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 3.013333333333333,
|
1595 |
+
"grad_norm": 0.06986956461906896,
|
1596 |
+
"learning_rate": 1.5732487918985018e-05,
|
1597 |
+
"loss": 0.1038,
|
1598 |
+
"step": 452
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 3.026666666666667,
|
1602 |
+
"grad_norm": 0.04645876637991321,
|
1603 |
+
"learning_rate": 1.5333218203356243e-05,
|
1604 |
+
"loss": 0.1015,
|
1605 |
+
"step": 454
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 3.04,
|
1609 |
+
"grad_norm": 0.07283995125204705,
|
1610 |
+
"learning_rate": 1.4938160786375572e-05,
|
1611 |
+
"loss": 0.0925,
|
1612 |
+
"step": 456
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 3.0533333333333332,
|
1616 |
+
"grad_norm": 0.07910413235666625,
|
1617 |
+
"learning_rate": 1.4547363670763137e-05,
|
1618 |
+
"loss": 0.0924,
|
1619 |
+
"step": 458
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 3.066666666666667,
|
1623 |
+
"grad_norm": 0.045001557247815696,
|
1624 |
+
"learning_rate": 1.4160874341577446e-05,
|
1625 |
+
"loss": 0.0803,
|
1626 |
+
"step": 460
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 3.08,
|
1630 |
+
"grad_norm": 0.06093464723725437,
|
1631 |
+
"learning_rate": 1.3778739760445552e-05,
|
1632 |
+
"loss": 0.1234,
|
1633 |
+
"step": 462
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 3.0933333333333333,
|
1637 |
+
"grad_norm": 0.05094873498049632,
|
1638 |
+
"learning_rate": 1.3401006359856915e-05,
|
1639 |
+
"loss": 0.0995,
|
1640 |
+
"step": 464
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 3.1066666666666665,
|
1644 |
+
"grad_norm": 0.047212663662106066,
|
1645 |
+
"learning_rate": 1.3027720037521397e-05,
|
1646 |
+
"loss": 0.0946,
|
1647 |
+
"step": 466
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 3.12,
|
1651 |
+
"grad_norm": 0.04483003730663884,
|
1652 |
+
"learning_rate": 1.2658926150792322e-05,
|
1653 |
+
"loss": 0.0878,
|
1654 |
+
"step": 468
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 3.1333333333333333,
|
1658 |
+
"grad_norm": 0.052921476974263,
|
1659 |
+
"learning_rate": 1.2294669511155193e-05,
|
1660 |
+
"loss": 0.0912,
|
1661 |
+
"step": 470
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 3.1466666666666665,
|
1665 |
+
"grad_norm": 0.06418992888305905,
|
1666 |
+
"learning_rate": 1.1934994378782772e-05,
|
1667 |
+
"loss": 0.0883,
|
1668 |
+
"step": 472
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 3.16,
|
1672 |
+
"grad_norm": 0.046014320213057874,
|
1673 |
+
"learning_rate": 1.157994445715706e-05,
|
1674 |
+
"loss": 0.0841,
|
1675 |
+
"step": 474
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 3.1733333333333333,
|
1679 |
+
"grad_norm": 0.04373558000132941,
|
1680 |
+
"learning_rate": 1.1229562887758926e-05,
|
1681 |
+
"loss": 0.086,
|
1682 |
+
"step": 476
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 3.1866666666666665,
|
1686 |
+
"grad_norm": 0.04549644276317006,
|
1687 |
+
"learning_rate": 1.0883892244826172e-05,
|
1688 |
+
"loss": 0.0841,
|
1689 |
+
"step": 478
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.2,
|
1693 |
+
"grad_norm": 0.04499841039501619,
|
1694 |
+
"learning_rate": 1.0542974530180327e-05,
|
1695 |
+
"loss": 0.0854,
|
1696 |
+
"step": 480
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.2133333333333334,
|
1700 |
+
"grad_norm": 0.04458813671986281,
|
1701 |
+
"learning_rate": 1.0206851168123077e-05,
|
1702 |
+
"loss": 0.0806,
|
1703 |
+
"step": 482
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 3.2266666666666666,
|
1707 |
+
"grad_norm": 0.04538958754859135,
|
1708 |
+
"learning_rate": 9.875563000402948e-06,
|
1709 |
+
"loss": 0.0909,
|
1710 |
+
"step": 484
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 3.24,
|
1714 |
+
"grad_norm": 0.04676100575004549,
|
1715 |
+
"learning_rate": 9.549150281252633e-06,
|
1716 |
+
"loss": 0.0867,
|
1717 |
+
"step": 486
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 3.2533333333333334,
|
1721 |
+
"grad_norm": 0.04775667156033876,
|
1722 |
+
"learning_rate": 9.227652672497761e-06,
|
1723 |
+
"loss": 0.0837,
|
1724 |
+
"step": 488
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 3.2666666666666666,
|
1728 |
+
"grad_norm": 0.04871933401332665,
|
1729 |
+
"learning_rate": 8.911109238737747e-06,
|
1730 |
+
"loss": 0.0905,
|
1731 |
+
"step": 490
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 3.2800000000000002,
|
1735 |
+
"grad_norm": 0.048251061213709735,
|
1736 |
+
"learning_rate": 8.599558442598998e-06,
|
1737 |
+
"loss": 0.0835,
|
1738 |
+
"step": 492
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 3.2933333333333334,
|
1742 |
+
"grad_norm": 0.044194676928720145,
|
1743 |
+
"learning_rate": 8.293038140061515e-06,
|
1744 |
+
"loss": 0.0821,
|
1745 |
+
"step": 494
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 3.3066666666666666,
|
1749 |
+
"grad_norm": 0.041166919617420104,
|
1750 |
+
"learning_rate": 7.991585575858961e-06,
|
1751 |
+
"loss": 0.0771,
|
1752 |
+
"step": 496
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 3.32,
|
1756 |
+
"grad_norm": 0.04340450144455652,
|
1757 |
+
"learning_rate": 7.695237378953223e-06,
|
1758 |
+
"loss": 0.0856,
|
1759 |
+
"step": 498
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 3.3333333333333335,
|
1763 |
+
"grad_norm": 0.04482578603744737,
|
1764 |
+
"learning_rate": 7.404029558083653e-06,
|
1765 |
+
"loss": 0.091,
|
1766 |
+
"step": 500
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 3.3466666666666667,
|
1770 |
+
"grad_norm": 0.0423271388459505,
|
1771 |
+
"learning_rate": 7.1179974973916486e-06,
|
1772 |
+
"loss": 0.0982,
|
1773 |
+
"step": 502
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 3.36,
|
1777 |
+
"grad_norm": 0.04729150303046179,
|
1778 |
+
"learning_rate": 6.837175952121306e-06,
|
1779 |
+
"loss": 0.0897,
|
1780 |
+
"step": 504
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 3.3733333333333335,
|
1784 |
+
"grad_norm": 0.043663930554440095,
|
1785 |
+
"learning_rate": 6.561599044396288e-06,
|
1786 |
+
"loss": 0.0805,
|
1787 |
+
"step": 506
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 3.3866666666666667,
|
1791 |
+
"grad_norm": 0.047396034103113265,
|
1792 |
+
"learning_rate": 6.291300259073724e-06,
|
1793 |
+
"loss": 0.0873,
|
1794 |
+
"step": 508
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.4,
|
1798 |
+
"grad_norm": 0.041607037767040306,
|
1799 |
+
"learning_rate": 6.026312439675552e-06,
|
1800 |
+
"loss": 0.0877,
|
1801 |
+
"step": 510
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.413333333333333,
|
1805 |
+
"grad_norm": 0.04570055978863104,
|
1806 |
+
"learning_rate": 5.766667784397706e-06,
|
1807 |
+
"loss": 0.0842,
|
1808 |
+
"step": 512
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 3.4266666666666667,
|
1812 |
+
"grad_norm": 0.047084915674548235,
|
1813 |
+
"learning_rate": 5.512397842197847e-06,
|
1814 |
+
"loss": 0.0827,
|
1815 |
+
"step": 514
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 3.44,
|
1819 |
+
"grad_norm": 0.04248308044077154,
|
1820 |
+
"learning_rate": 5.263533508961827e-06,
|
1821 |
+
"loss": 0.0872,
|
1822 |
+
"step": 516
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 3.453333333333333,
|
1826 |
+
"grad_norm": 0.0431950346712709,
|
1827 |
+
"learning_rate": 5.020105023749644e-06,
|
1828 |
+
"loss": 0.0799,
|
1829 |
+
"step": 518
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 3.466666666666667,
|
1833 |
+
"grad_norm": 0.042080373582692975,
|
1834 |
+
"learning_rate": 4.782141965121128e-06,
|
1835 |
+
"loss": 0.0848,
|
1836 |
+
"step": 520
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 3.48,
|
1840 |
+
"grad_norm": 0.04306063391695332,
|
1841 |
+
"learning_rate": 4.549673247541875e-06,
|
1842 |
+
"loss": 0.0856,
|
1843 |
+
"step": 522
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 3.493333333333333,
|
1847 |
+
"grad_norm": 0.04068878744398977,
|
1848 |
+
"learning_rate": 4.322727117869951e-06,
|
1849 |
+
"loss": 0.0839,
|
1850 |
+
"step": 524
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 3.506666666666667,
|
1854 |
+
"grad_norm": 0.04265900688561506,
|
1855 |
+
"learning_rate": 4.101331151923649e-06,
|
1856 |
+
"loss": 0.0835,
|
1857 |
+
"step": 526
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 3.52,
|
1861 |
+
"grad_norm": 0.04420106611259069,
|
1862 |
+
"learning_rate": 3.885512251130763e-06,
|
1863 |
+
"loss": 0.081,
|
1864 |
+
"step": 528
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 3.533333333333333,
|
1868 |
+
"grad_norm": 0.04448511152443269,
|
1869 |
+
"learning_rate": 3.675296639259912e-06,
|
1870 |
+
"loss": 0.0781,
|
1871 |
+
"step": 530
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 3.546666666666667,
|
1875 |
+
"grad_norm": 0.0497215492121585,
|
1876 |
+
"learning_rate": 3.470709859234084e-06,
|
1877 |
+
"loss": 0.0861,
|
1878 |
+
"step": 532
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 3.56,
|
1882 |
+
"grad_norm": 0.04327001143276467,
|
1883 |
+
"learning_rate": 3.271776770026963e-06,
|
1884 |
+
"loss": 0.0821,
|
1885 |
+
"step": 534
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 3.5733333333333333,
|
1889 |
+
"grad_norm": 0.04640151743831662,
|
1890 |
+
"learning_rate": 3.078521543642399e-06,
|
1891 |
+
"loss": 0.0832,
|
1892 |
+
"step": 536
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 3.586666666666667,
|
1896 |
+
"grad_norm": 0.04561248756380693,
|
1897 |
+
"learning_rate": 2.890967662177285e-06,
|
1898 |
+
"loss": 0.0825,
|
1899 |
+
"step": 538
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.6,
|
1903 |
+
"grad_norm": 0.044823431840851795,
|
1904 |
+
"learning_rate": 2.7091379149682685e-06,
|
1905 |
+
"loss": 0.0855,
|
1906 |
+
"step": 540
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.6133333333333333,
|
1910 |
+
"grad_norm": 0.04467387500603864,
|
1911 |
+
"learning_rate": 2.533054395822704e-06,
|
1912 |
+
"loss": 0.0808,
|
1913 |
+
"step": 542
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 3.626666666666667,
|
1917 |
+
"grad_norm": 0.04309386698570381,
|
1918 |
+
"learning_rate": 2.362738500334055e-06,
|
1919 |
+
"loss": 0.0854,
|
1920 |
+
"step": 544
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 3.64,
|
1924 |
+
"grad_norm": 0.044664454082356274,
|
1925 |
+
"learning_rate": 2.1982109232821178e-06,
|
1926 |
+
"loss": 0.0789,
|
1927 |
+
"step": 546
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 3.6533333333333333,
|
1931 |
+
"grad_norm": 0.04716609021143504,
|
1932 |
+
"learning_rate": 2.0394916561185083e-06,
|
1933 |
+
"loss": 0.0816,
|
1934 |
+
"step": 548
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 3.6666666666666665,
|
1938 |
+
"grad_norm": 0.04680056577205041,
|
1939 |
+
"learning_rate": 1.8865999845374793e-06,
|
1940 |
+
"loss": 0.0852,
|
1941 |
+
"step": 550
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 3.68,
|
1945 |
+
"grad_norm": 0.04094899680731965,
|
1946 |
+
"learning_rate": 1.7395544861325718e-06,
|
1947 |
+
"loss": 0.0825,
|
1948 |
+
"step": 552
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 3.6933333333333334,
|
1952 |
+
"grad_norm": 0.04513598017091709,
|
1953 |
+
"learning_rate": 1.5983730281392662e-06,
|
1954 |
+
"loss": 0.0844,
|
1955 |
+
"step": 554
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 3.7066666666666666,
|
1959 |
+
"grad_norm": 0.04447335757534387,
|
1960 |
+
"learning_rate": 1.463072765264001e-06,
|
1961 |
+
"loss": 0.0795,
|
1962 |
+
"step": 556
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 3.7199999999999998,
|
1966 |
+
"grad_norm": 0.05017281858396558,
|
1967 |
+
"learning_rate": 1.333670137599713e-06,
|
1968 |
+
"loss": 0.0863,
|
1969 |
+
"step": 558
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 3.7333333333333334,
|
1973 |
+
"grad_norm": 0.04423261507584507,
|
1974 |
+
"learning_rate": 1.210180868628219e-06,
|
1975 |
+
"loss": 0.0754,
|
1976 |
+
"step": 560
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 3.7466666666666666,
|
1980 |
+
"grad_norm": 0.04570867789002808,
|
1981 |
+
"learning_rate": 1.0926199633097157e-06,
|
1982 |
+
"loss": 0.0849,
|
1983 |
+
"step": 562
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 3.76,
|
1987 |
+
"grad_norm": 0.04507390589448999,
|
1988 |
+
"learning_rate": 9.810017062595322e-07,
|
1989 |
+
"loss": 0.0806,
|
1990 |
+
"step": 564
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 3.7733333333333334,
|
1994 |
+
"grad_norm": 0.04677585146978537,
|
1995 |
+
"learning_rate": 8.753396600124253e-07,
|
1996 |
+
"loss": 0.0888,
|
1997 |
+
"step": 566
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 3.7866666666666666,
|
2001 |
+
"grad_norm": 0.04312088768971057,
|
2002 |
+
"learning_rate": 7.756466633746407e-07,
|
2003 |
+
"loss": 0.0796,
|
2004 |
+
"step": 568
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 3.8,
|
2008 |
+
"grad_norm": 0.0394326107141489,
|
2009 |
+
"learning_rate": 6.819348298638839e-07,
|
2010 |
+
"loss": 0.0788,
|
2011 |
+
"step": 570
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 3.8133333333333335,
|
2015 |
+
"grad_norm": 0.042695812138021566,
|
2016 |
+
"learning_rate": 5.9421554623742e-07,
|
2017 |
+
"loss": 0.0754,
|
2018 |
+
"step": 572
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 3.8266666666666667,
|
2022 |
+
"grad_norm": 0.0439412303235543,
|
2023 |
+
"learning_rate": 5.124994711084963e-07,
|
2024 |
+
"loss": 0.0846,
|
2025 |
+
"step": 574
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 3.84,
|
2029 |
+
"grad_norm": 0.039293878670403605,
|
2030 |
+
"learning_rate": 4.367965336512403e-07,
|
2031 |
+
"loss": 0.0776,
|
2032 |
+
"step": 576
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 3.8533333333333335,
|
2036 |
+
"grad_norm": 0.043627292403458834,
|
2037 |
+
"learning_rate": 3.6711593239417973e-07,
|
2038 |
+
"loss": 0.0782,
|
2039 |
+
"step": 578
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 3.8666666666666667,
|
2043 |
+
"grad_norm": 0.04213940119937548,
|
2044 |
+
"learning_rate": 3.034661341025258e-07,
|
2045 |
+
"loss": 0.0861,
|
2046 |
+
"step": 580
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 3.88,
|
2050 |
+
"grad_norm": 0.04373997508644139,
|
2051 |
+
"learning_rate": 2.458548727494292e-07,
|
2052 |
+
"loss": 0.0891,
|
2053 |
+
"step": 582
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 3.8933333333333335,
|
2057 |
+
"grad_norm": 0.047501079719067495,
|
2058 |
+
"learning_rate": 1.942891485762044e-07,
|
2059 |
+
"loss": 0.0862,
|
2060 |
+
"step": 584
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 3.9066666666666667,
|
2064 |
+
"grad_norm": 0.04330962300407197,
|
2065 |
+
"learning_rate": 1.4877522724175973e-07,
|
2066 |
+
"loss": 0.0804,
|
2067 |
+
"step": 586
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 3.92,
|
2071 |
+
"grad_norm": 0.051714606824807656,
|
2072 |
+
"learning_rate": 1.0931863906127327e-07,
|
2073 |
+
"loss": 0.0934,
|
2074 |
+
"step": 588
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 3.9333333333333336,
|
2078 |
+
"grad_norm": 0.04613614120222887,
|
2079 |
+
"learning_rate": 7.59241783341913e-08,
|
2080 |
+
"loss": 0.0948,
|
2081 |
+
"step": 590
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 3.9466666666666668,
|
2085 |
+
"grad_norm": 0.16351246299670308,
|
2086 |
+
"learning_rate": 4.859590276170556e-08,
|
2087 |
+
"loss": 0.0887,
|
2088 |
+
"step": 592
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 3.96,
|
2092 |
+
"grad_norm": 0.04256032208605194,
|
2093 |
+
"learning_rate": 2.7337132953697554e-08,
|
2094 |
+
"loss": 0.0866,
|
2095 |
+
"step": 594
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 3.9733333333333336,
|
2099 |
+
"grad_norm": 0.04791037317445386,
|
2100 |
+
"learning_rate": 1.215045202527243e-08,
|
2101 |
+
"loss": 0.0906,
|
2102 |
+
"step": 596
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 3.986666666666667,
|
2106 |
+
"grad_norm": 0.04423655674990359,
|
2107 |
+
"learning_rate": 3.0377052828489683e-09,
|
2108 |
+
"loss": 0.0832,
|
2109 |
+
"step": 598
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 4.0,
|
2113 |
+
"grad_norm": 0.0445911005271618,
|
2114 |
+
"learning_rate": 0.0,
|
2115 |
+
"loss": 0.0851,
|
2116 |
+
"step": 600
|
2117 |
+
}
|
2118 |
+
],
|
2119 |
+
"logging_steps": 2,
|
2120 |
+
"max_steps": 600,
|
2121 |
+
"num_input_tokens_seen": 0,
|
2122 |
+
"num_train_epochs": 4,
|
2123 |
+
"save_steps": 500,
|
2124 |
+
"stateful_callbacks": {
|
2125 |
+
"TrainerControl": {
|
2126 |
+
"args": {
|
2127 |
+
"should_epoch_stop": false,
|
2128 |
+
"should_evaluate": false,
|
2129 |
+
"should_log": false,
|
2130 |
+
"should_save": true,
|
2131 |
+
"should_training_stop": true
|
2132 |
+
},
|
2133 |
+
"attributes": {}
|
2134 |
+
}
|
2135 |
+
},
|
2136 |
+
"total_flos": 2.4291042241019904e+19,
|
2137 |
+
"train_batch_size": 2,
|
2138 |
+
"trial_name": null,
|
2139 |
+
"trial_params": null
|
2140 |
+
}
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a16e64d1c6021a3fcf756d3a684b46c5373f16f0e5f84b7b702a5b8705320d43
|
3 |
+
size 7800
|
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|