tktung commited on
Commit
f458cba
·
verified ·
1 Parent(s): d57d481

Upload folder using huggingface_hub

Browse files
Files changed (26) hide show
  1. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/config.json +30 -0
  2. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/generation_config.json +10 -0
  3. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/latest +1 -0
  4. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00001-of-00006.safetensors +3 -0
  5. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00002-of-00006.safetensors +3 -0
  6. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00003-of-00006.safetensors +3 -0
  7. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00004-of-00006.safetensors +3 -0
  8. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00005-of-00006.safetensors +3 -0
  9. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00006-of-00006.safetensors +3 -0
  10. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model.safetensors.index.json +370 -0
  11. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_0.pth +3 -0
  12. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_1.pth +3 -0
  13. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_2.pth +3 -0
  14. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_3.pth +3 -0
  15. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_4.pth +3 -0
  16. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_5.pth +3 -0
  17. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_6.pth +3 -0
  18. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_7.pth +3 -0
  19. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/scheduler.pt +3 -0
  20. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/special_tokens_map.json +24 -0
  21. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.json +0 -0
  22. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.model +3 -0
  23. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer_config.json +43 -0
  24. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/trainer_state.json +2140 -0
  25. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/training_args.bin +3 -0
  26. uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step600
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7404770436c5dd040e59adac4e67745f2bf7bc984029f60f55bd6a08a5018d87
3
+ size 4961502800
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a4799e63078515ff6ea6368ecadec4831c5e4be85e2075c1937fe165485fdae
3
+ size 4970422232
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f2f24f13376bb67149076b07a934742f36af5c21c8fa16a90cb423f61e803c
3
+ size 4881272584
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5856072d59472c91897e0dd8b3176f4c30f7dfba2fb03459dec78b270db66077
3
+ size 4933722216
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c0d71d2264dd43cc7c7165d1f3318da01b827efb6ff3bd8e5b3634fa4a0c632
3
+ size 4933722208
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fc4cb77a4c9ede2854d09a3890fa8a5c98ad8944fb63ac39616bd69090e6a85
3
+ size 1422460712
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a4639c63dd87ac33e45e3023adf278d225bcd84f3716bdf300ca937d7c28411
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d98634ab74d1b6c3b107bd223d174aa7e02fd4a2b2d6101ecebdd4176f2c84f5
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd4f75d8f1f8239b80b7fbf53b019cce45e362f7b71af64e66d404070bc686bf
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e9404b8ac4a720bcb8b487c880ce34d3ff2b170ed00e374f27c80aef144a04a
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dc4dd7a62d55ce80ab99ebc1759af8a1c5eb33377a107a7f9165349321b7d10
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:769d4f3f169a4b113287ed32b16e0940c67525bc8f3f98a0880e7404af13a165
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29c8b24910d22e122e4179c4725875248c943a60476d9e2f4ffc14d84853698f
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15a18f30295c7ca7ec4d2dc6672effd06c2fc171a24d9333361d84ca8bab9f91
3
+ size 15920
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb32cd664c03f99416e88cb165664261c944f0a93911cbd353552af4df2e3dd
3
+ size 1064
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
3
+ size 558602
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/trainer_state.json ADDED
@@ -0,0 +1,2140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.0,
5
+ "eval_steps": 500,
6
+ "global_step": 600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006666666666666667,
13
+ "grad_norm": 2.1791141124998874,
14
+ "learning_rate": 3.3333333333333333e-06,
15
+ "loss": 1.6756,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.013333333333333334,
20
+ "grad_norm": 2.21212674396317,
21
+ "learning_rate": 6.666666666666667e-06,
22
+ "loss": 1.7119,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.02666666666666667,
27
+ "grad_norm": 1.052610355531555,
28
+ "learning_rate": 1.3333333333333333e-05,
29
+ "loss": 1.5794,
30
+ "step": 4
31
+ },
32
+ {
33
+ "epoch": 0.04,
34
+ "grad_norm": 0.40843681896688516,
35
+ "learning_rate": 2e-05,
36
+ "loss": 1.406,
37
+ "step": 6
38
+ },
39
+ {
40
+ "epoch": 0.05333333333333334,
41
+ "grad_norm": 0.5064473426489812,
42
+ "learning_rate": 2.6666666666666667e-05,
43
+ "loss": 1.3868,
44
+ "step": 8
45
+ },
46
+ {
47
+ "epoch": 0.06666666666666667,
48
+ "grad_norm": 3.3113519775496347,
49
+ "learning_rate": 3.3333333333333335e-05,
50
+ "loss": 1.5195,
51
+ "step": 10
52
+ },
53
+ {
54
+ "epoch": 0.08,
55
+ "grad_norm": 0.3604597146473128,
56
+ "learning_rate": 4e-05,
57
+ "loss": 1.3777,
58
+ "step": 12
59
+ },
60
+ {
61
+ "epoch": 0.09333333333333334,
62
+ "grad_norm": 0.23235777614167963,
63
+ "learning_rate": 4.666666666666667e-05,
64
+ "loss": 1.2747,
65
+ "step": 14
66
+ },
67
+ {
68
+ "epoch": 0.10666666666666667,
69
+ "grad_norm": 0.24107331430994436,
70
+ "learning_rate": 5.333333333333333e-05,
71
+ "loss": 1.2307,
72
+ "step": 16
73
+ },
74
+ {
75
+ "epoch": 0.12,
76
+ "grad_norm": 0.19828951527897512,
77
+ "learning_rate": 6e-05,
78
+ "loss": 1.2127,
79
+ "step": 18
80
+ },
81
+ {
82
+ "epoch": 0.13333333333333333,
83
+ "grad_norm": 0.12945101422872216,
84
+ "learning_rate": 6.666666666666667e-05,
85
+ "loss": 1.2027,
86
+ "step": 20
87
+ },
88
+ {
89
+ "epoch": 0.14666666666666667,
90
+ "grad_norm": 0.12079427155353203,
91
+ "learning_rate": 7.333333333333333e-05,
92
+ "loss": 1.165,
93
+ "step": 22
94
+ },
95
+ {
96
+ "epoch": 0.16,
97
+ "grad_norm": 0.11223243327491182,
98
+ "learning_rate": 8e-05,
99
+ "loss": 1.1332,
100
+ "step": 24
101
+ },
102
+ {
103
+ "epoch": 0.17333333333333334,
104
+ "grad_norm": 0.11700825567943814,
105
+ "learning_rate": 8.666666666666667e-05,
106
+ "loss": 1.1353,
107
+ "step": 26
108
+ },
109
+ {
110
+ "epoch": 0.18666666666666668,
111
+ "grad_norm": 0.10577860008538974,
112
+ "learning_rate": 9.333333333333334e-05,
113
+ "loss": 1.1126,
114
+ "step": 28
115
+ },
116
+ {
117
+ "epoch": 0.2,
118
+ "grad_norm": 0.08770959641951533,
119
+ "learning_rate": 0.0001,
120
+ "loss": 1.116,
121
+ "step": 30
122
+ },
123
+ {
124
+ "epoch": 0.21333333333333335,
125
+ "grad_norm": 0.08173970603071407,
126
+ "learning_rate": 9.999696229471716e-05,
127
+ "loss": 1.09,
128
+ "step": 32
129
+ },
130
+ {
131
+ "epoch": 0.22666666666666666,
132
+ "grad_norm": 0.07804539860851849,
133
+ "learning_rate": 9.998784954797474e-05,
134
+ "loss": 1.0622,
135
+ "step": 34
136
+ },
137
+ {
138
+ "epoch": 0.24,
139
+ "grad_norm": 0.07305109208219707,
140
+ "learning_rate": 9.997266286704631e-05,
141
+ "loss": 1.0522,
142
+ "step": 36
143
+ },
144
+ {
145
+ "epoch": 0.25333333333333335,
146
+ "grad_norm": 0.08178925315694836,
147
+ "learning_rate": 9.99514040972383e-05,
148
+ "loss": 1.0539,
149
+ "step": 38
150
+ },
151
+ {
152
+ "epoch": 0.26666666666666666,
153
+ "grad_norm": 0.07827810776223704,
154
+ "learning_rate": 9.992407582166581e-05,
155
+ "loss": 1.0715,
156
+ "step": 40
157
+ },
158
+ {
159
+ "epoch": 0.28,
160
+ "grad_norm": 0.0844202707800422,
161
+ "learning_rate": 9.989068136093873e-05,
162
+ "loss": 1.0274,
163
+ "step": 42
164
+ },
165
+ {
166
+ "epoch": 0.29333333333333333,
167
+ "grad_norm": 0.06818226761844356,
168
+ "learning_rate": 9.985122477275824e-05,
169
+ "loss": 1.0338,
170
+ "step": 44
171
+ },
172
+ {
173
+ "epoch": 0.30666666666666664,
174
+ "grad_norm": 0.07583484586118773,
175
+ "learning_rate": 9.980571085142381e-05,
176
+ "loss": 1.0323,
177
+ "step": 46
178
+ },
179
+ {
180
+ "epoch": 0.32,
181
+ "grad_norm": 0.0755020533085722,
182
+ "learning_rate": 9.975414512725057e-05,
183
+ "loss": 1.015,
184
+ "step": 48
185
+ },
186
+ {
187
+ "epoch": 0.3333333333333333,
188
+ "grad_norm": 0.08406998549299528,
189
+ "learning_rate": 9.969653386589748e-05,
190
+ "loss": 0.9656,
191
+ "step": 50
192
+ },
193
+ {
194
+ "epoch": 0.3466666666666667,
195
+ "grad_norm": 0.07101342121045431,
196
+ "learning_rate": 9.963288406760582e-05,
197
+ "loss": 0.9657,
198
+ "step": 52
199
+ },
200
+ {
201
+ "epoch": 0.36,
202
+ "grad_norm": 0.07417386295183337,
203
+ "learning_rate": 9.956320346634876e-05,
204
+ "loss": 0.9937,
205
+ "step": 54
206
+ },
207
+ {
208
+ "epoch": 0.37333333333333335,
209
+ "grad_norm": 0.07154338853868397,
210
+ "learning_rate": 9.94875005288915e-05,
211
+ "loss": 0.9589,
212
+ "step": 56
213
+ },
214
+ {
215
+ "epoch": 0.38666666666666666,
216
+ "grad_norm": 0.07218740352233513,
217
+ "learning_rate": 9.940578445376258e-05,
218
+ "loss": 0.9685,
219
+ "step": 58
220
+ },
221
+ {
222
+ "epoch": 0.4,
223
+ "grad_norm": 0.07100653973675006,
224
+ "learning_rate": 9.931806517013612e-05,
225
+ "loss": 0.9573,
226
+ "step": 60
227
+ },
228
+ {
229
+ "epoch": 0.41333333333333333,
230
+ "grad_norm": 0.06711082249359601,
231
+ "learning_rate": 9.922435333662536e-05,
232
+ "loss": 0.9364,
233
+ "step": 62
234
+ },
235
+ {
236
+ "epoch": 0.4266666666666667,
237
+ "grad_norm": 0.07153154856840055,
238
+ "learning_rate": 9.912466033998757e-05,
239
+ "loss": 0.9374,
240
+ "step": 64
241
+ },
242
+ {
243
+ "epoch": 0.44,
244
+ "grad_norm": 0.06963514347132123,
245
+ "learning_rate": 9.901899829374047e-05,
246
+ "loss": 0.9663,
247
+ "step": 66
248
+ },
249
+ {
250
+ "epoch": 0.4533333333333333,
251
+ "grad_norm": 0.0659376914599576,
252
+ "learning_rate": 9.890738003669029e-05,
253
+ "loss": 0.9108,
254
+ "step": 68
255
+ },
256
+ {
257
+ "epoch": 0.4666666666666667,
258
+ "grad_norm": 0.06958378585339599,
259
+ "learning_rate": 9.878981913137179e-05,
260
+ "loss": 0.903,
261
+ "step": 70
262
+ },
263
+ {
264
+ "epoch": 0.48,
265
+ "grad_norm": 0.0764469187644936,
266
+ "learning_rate": 9.86663298624003e-05,
267
+ "loss": 0.9008,
268
+ "step": 72
269
+ },
270
+ {
271
+ "epoch": 0.49333333333333335,
272
+ "grad_norm": 0.07709623493461817,
273
+ "learning_rate": 9.8536927234736e-05,
274
+ "loss": 0.9305,
275
+ "step": 74
276
+ },
277
+ {
278
+ "epoch": 0.5066666666666667,
279
+ "grad_norm": 0.06882033015566792,
280
+ "learning_rate": 9.840162697186075e-05,
281
+ "loss": 0.9153,
282
+ "step": 76
283
+ },
284
+ {
285
+ "epoch": 0.52,
286
+ "grad_norm": 0.06984284125927373,
287
+ "learning_rate": 9.826044551386744e-05,
288
+ "loss": 0.8861,
289
+ "step": 78
290
+ },
291
+ {
292
+ "epoch": 0.5333333333333333,
293
+ "grad_norm": 11.87344671430505,
294
+ "learning_rate": 9.811340001546251e-05,
295
+ "loss": 0.8805,
296
+ "step": 80
297
+ },
298
+ {
299
+ "epoch": 0.5466666666666666,
300
+ "grad_norm": 0.07471362876432724,
301
+ "learning_rate": 9.796050834388149e-05,
302
+ "loss": 0.8571,
303
+ "step": 82
304
+ },
305
+ {
306
+ "epoch": 0.56,
307
+ "grad_norm": 0.20377795789303127,
308
+ "learning_rate": 9.780178907671789e-05,
309
+ "loss": 0.8725,
310
+ "step": 84
311
+ },
312
+ {
313
+ "epoch": 0.5733333333333334,
314
+ "grad_norm": 0.09817542250054903,
315
+ "learning_rate": 9.763726149966596e-05,
316
+ "loss": 0.8883,
317
+ "step": 86
318
+ },
319
+ {
320
+ "epoch": 0.5866666666666667,
321
+ "grad_norm": 0.10979752851172697,
322
+ "learning_rate": 9.746694560417731e-05,
323
+ "loss": 0.8708,
324
+ "step": 88
325
+ },
326
+ {
327
+ "epoch": 0.6,
328
+ "grad_norm": 0.09854482601183034,
329
+ "learning_rate": 9.729086208503174e-05,
330
+ "loss": 0.8883,
331
+ "step": 90
332
+ },
333
+ {
334
+ "epoch": 0.6133333333333333,
335
+ "grad_norm": 0.08153129504069773,
336
+ "learning_rate": 9.710903233782272e-05,
337
+ "loss": 0.8385,
338
+ "step": 92
339
+ },
340
+ {
341
+ "epoch": 0.6266666666666667,
342
+ "grad_norm": 0.07933734102384941,
343
+ "learning_rate": 9.692147845635761e-05,
344
+ "loss": 0.8658,
345
+ "step": 94
346
+ },
347
+ {
348
+ "epoch": 0.64,
349
+ "grad_norm": 0.08703768235227666,
350
+ "learning_rate": 9.672822322997305e-05,
351
+ "loss": 0.8314,
352
+ "step": 96
353
+ },
354
+ {
355
+ "epoch": 0.6533333333333333,
356
+ "grad_norm": 0.07185119301522967,
357
+ "learning_rate": 9.652929014076593e-05,
358
+ "loss": 0.7829,
359
+ "step": 98
360
+ },
361
+ {
362
+ "epoch": 0.6666666666666666,
363
+ "grad_norm": 0.08362387977855704,
364
+ "learning_rate": 9.632470336074009e-05,
365
+ "loss": 0.7932,
366
+ "step": 100
367
+ },
368
+ {
369
+ "epoch": 0.68,
370
+ "grad_norm": 0.07857330769987199,
371
+ "learning_rate": 9.611448774886924e-05,
372
+ "loss": 0.8094,
373
+ "step": 102
374
+ },
375
+ {
376
+ "epoch": 0.6933333333333334,
377
+ "grad_norm": 0.07470080527568211,
378
+ "learning_rate": 9.589866884807635e-05,
379
+ "loss": 0.8153,
380
+ "step": 104
381
+ },
382
+ {
383
+ "epoch": 0.7066666666666667,
384
+ "grad_norm": 0.07991307787992707,
385
+ "learning_rate": 9.567727288213005e-05,
386
+ "loss": 0.7736,
387
+ "step": 106
388
+ },
389
+ {
390
+ "epoch": 0.72,
391
+ "grad_norm": 0.0733968002848949,
392
+ "learning_rate": 9.545032675245813e-05,
393
+ "loss": 0.78,
394
+ "step": 108
395
+ },
396
+ {
397
+ "epoch": 0.7333333333333333,
398
+ "grad_norm": 0.07751184405863311,
399
+ "learning_rate": 9.521785803487889e-05,
400
+ "loss": 0.7959,
401
+ "step": 110
402
+ },
403
+ {
404
+ "epoch": 0.7466666666666667,
405
+ "grad_norm": 0.08355612624474511,
406
+ "learning_rate": 9.497989497625035e-05,
407
+ "loss": 0.7751,
408
+ "step": 112
409
+ },
410
+ {
411
+ "epoch": 0.76,
412
+ "grad_norm": 0.0929055766139149,
413
+ "learning_rate": 9.473646649103818e-05,
414
+ "loss": 0.7848,
415
+ "step": 114
416
+ },
417
+ {
418
+ "epoch": 0.7733333333333333,
419
+ "grad_norm": 0.09585556290161484,
420
+ "learning_rate": 9.448760215780217e-05,
421
+ "loss": 0.7786,
422
+ "step": 116
423
+ },
424
+ {
425
+ "epoch": 0.7866666666666666,
426
+ "grad_norm": 0.0836807061462442,
427
+ "learning_rate": 9.42333322156023e-05,
428
+ "loss": 0.7334,
429
+ "step": 118
430
+ },
431
+ {
432
+ "epoch": 0.8,
433
+ "grad_norm": 0.07708063741525999,
434
+ "learning_rate": 9.397368756032445e-05,
435
+ "loss": 0.7602,
436
+ "step": 120
437
+ },
438
+ {
439
+ "epoch": 0.8133333333333334,
440
+ "grad_norm": 1.0840349168421557,
441
+ "learning_rate": 9.370869974092629e-05,
442
+ "loss": 0.7948,
443
+ "step": 122
444
+ },
445
+ {
446
+ "epoch": 0.8266666666666667,
447
+ "grad_norm": 0.6248060432126027,
448
+ "learning_rate": 9.343840095560372e-05,
449
+ "loss": 0.7419,
450
+ "step": 124
451
+ },
452
+ {
453
+ "epoch": 0.84,
454
+ "grad_norm": 0.14470369129957764,
455
+ "learning_rate": 9.316282404787871e-05,
456
+ "loss": 0.7623,
457
+ "step": 126
458
+ },
459
+ {
460
+ "epoch": 0.8533333333333334,
461
+ "grad_norm": 0.131124623959581,
462
+ "learning_rate": 9.288200250260836e-05,
463
+ "loss": 0.7591,
464
+ "step": 128
465
+ },
466
+ {
467
+ "epoch": 0.8666666666666667,
468
+ "grad_norm": 0.11725616877030448,
469
+ "learning_rate": 9.259597044191636e-05,
470
+ "loss": 0.7409,
471
+ "step": 130
472
+ },
473
+ {
474
+ "epoch": 0.88,
475
+ "grad_norm": 0.12199467676115175,
476
+ "learning_rate": 9.230476262104677e-05,
477
+ "loss": 0.6848,
478
+ "step": 132
479
+ },
480
+ {
481
+ "epoch": 0.8933333333333333,
482
+ "grad_norm": 0.08692329616701802,
483
+ "learning_rate": 9.200841442414106e-05,
484
+ "loss": 0.7042,
485
+ "step": 134
486
+ },
487
+ {
488
+ "epoch": 0.9066666666666666,
489
+ "grad_norm": 0.07518959531670097,
490
+ "learning_rate": 9.17069618599385e-05,
491
+ "loss": 0.692,
492
+ "step": 136
493
+ },
494
+ {
495
+ "epoch": 0.92,
496
+ "grad_norm": 0.09269304556873778,
497
+ "learning_rate": 9.140044155740101e-05,
498
+ "loss": 0.719,
499
+ "step": 138
500
+ },
501
+ {
502
+ "epoch": 0.9333333333333333,
503
+ "grad_norm": 0.0794274462938484,
504
+ "learning_rate": 9.108889076126226e-05,
505
+ "loss": 0.7442,
506
+ "step": 140
507
+ },
508
+ {
509
+ "epoch": 0.9466666666666667,
510
+ "grad_norm": 0.07208605668488438,
511
+ "learning_rate": 9.077234732750224e-05,
512
+ "loss": 0.6918,
513
+ "step": 142
514
+ },
515
+ {
516
+ "epoch": 0.96,
517
+ "grad_norm": 0.08494128110838685,
518
+ "learning_rate": 9.045084971874738e-05,
519
+ "loss": 0.6942,
520
+ "step": 144
521
+ },
522
+ {
523
+ "epoch": 0.9733333333333334,
524
+ "grad_norm": 0.07966340996836804,
525
+ "learning_rate": 9.012443699959705e-05,
526
+ "loss": 0.6471,
527
+ "step": 146
528
+ },
529
+ {
530
+ "epoch": 0.9866666666666667,
531
+ "grad_norm": 0.07509382026953668,
532
+ "learning_rate": 8.979314883187693e-05,
533
+ "loss": 0.6641,
534
+ "step": 148
535
+ },
536
+ {
537
+ "epoch": 1.0,
538
+ "grad_norm": 0.09671488019621963,
539
+ "learning_rate": 8.945702546981969e-05,
540
+ "loss": 0.6563,
541
+ "step": 150
542
+ },
543
+ {
544
+ "epoch": 1.0133333333333334,
545
+ "grad_norm": 0.07306699627281733,
546
+ "learning_rate": 8.911610775517382e-05,
547
+ "loss": 0.4728,
548
+ "step": 152
549
+ },
550
+ {
551
+ "epoch": 1.0266666666666666,
552
+ "grad_norm": 0.07113580005854522,
553
+ "learning_rate": 8.877043711224108e-05,
554
+ "loss": 0.4537,
555
+ "step": 154
556
+ },
557
+ {
558
+ "epoch": 1.04,
559
+ "grad_norm": 0.08242409293384922,
560
+ "learning_rate": 8.842005554284296e-05,
561
+ "loss": 0.4754,
562
+ "step": 156
563
+ },
564
+ {
565
+ "epoch": 1.0533333333333332,
566
+ "grad_norm": 0.08558759822156714,
567
+ "learning_rate": 8.806500562121723e-05,
568
+ "loss": 0.4409,
569
+ "step": 158
570
+ },
571
+ {
572
+ "epoch": 1.0666666666666667,
573
+ "grad_norm": 0.08093797796678245,
574
+ "learning_rate": 8.770533048884482e-05,
575
+ "loss": 0.4629,
576
+ "step": 160
577
+ },
578
+ {
579
+ "epoch": 1.08,
580
+ "grad_norm": 0.07276419262446279,
581
+ "learning_rate": 8.73410738492077e-05,
582
+ "loss": 0.4509,
583
+ "step": 162
584
+ },
585
+ {
586
+ "epoch": 1.0933333333333333,
587
+ "grad_norm": 0.13007281279313135,
588
+ "learning_rate": 8.697227996247861e-05,
589
+ "loss": 0.4929,
590
+ "step": 164
591
+ },
592
+ {
593
+ "epoch": 1.1066666666666667,
594
+ "grad_norm": 0.08797907567452011,
595
+ "learning_rate": 8.659899364014309e-05,
596
+ "loss": 0.4567,
597
+ "step": 166
598
+ },
599
+ {
600
+ "epoch": 1.12,
601
+ "grad_norm": 0.08399912199961071,
602
+ "learning_rate": 8.622126023955446e-05,
603
+ "loss": 0.4561,
604
+ "step": 168
605
+ },
606
+ {
607
+ "epoch": 1.1333333333333333,
608
+ "grad_norm": 0.14999451040489625,
609
+ "learning_rate": 8.583912565842257e-05,
610
+ "loss": 0.461,
611
+ "step": 170
612
+ },
613
+ {
614
+ "epoch": 1.1466666666666667,
615
+ "grad_norm": 0.07239352221098809,
616
+ "learning_rate": 8.545263632923687e-05,
617
+ "loss": 0.4386,
618
+ "step": 172
619
+ },
620
+ {
621
+ "epoch": 1.16,
622
+ "grad_norm": 0.07274293681830099,
623
+ "learning_rate": 8.506183921362443e-05,
624
+ "loss": 0.425,
625
+ "step": 174
626
+ },
627
+ {
628
+ "epoch": 1.1733333333333333,
629
+ "grad_norm": 0.06567961209669387,
630
+ "learning_rate": 8.466678179664379e-05,
631
+ "loss": 0.4316,
632
+ "step": 176
633
+ },
634
+ {
635
+ "epoch": 1.1866666666666668,
636
+ "grad_norm": 0.06800506030151886,
637
+ "learning_rate": 8.4267512081015e-05,
638
+ "loss": 0.4262,
639
+ "step": 178
640
+ },
641
+ {
642
+ "epoch": 1.2,
643
+ "grad_norm": 0.06310710452459224,
644
+ "learning_rate": 8.386407858128706e-05,
645
+ "loss": 0.4393,
646
+ "step": 180
647
+ },
648
+ {
649
+ "epoch": 1.2133333333333334,
650
+ "grad_norm": 0.07077155581372561,
651
+ "learning_rate": 8.345653031794292e-05,
652
+ "loss": 0.4394,
653
+ "step": 182
654
+ },
655
+ {
656
+ "epoch": 1.2266666666666666,
657
+ "grad_norm": 0.06505271915956287,
658
+ "learning_rate": 8.304491681144306e-05,
659
+ "loss": 0.4486,
660
+ "step": 184
661
+ },
662
+ {
663
+ "epoch": 1.24,
664
+ "grad_norm": 0.059685754017888774,
665
+ "learning_rate": 8.262928807620843e-05,
666
+ "loss": 0.4449,
667
+ "step": 186
668
+ },
669
+ {
670
+ "epoch": 1.2533333333333334,
671
+ "grad_norm": 0.061596408555461855,
672
+ "learning_rate": 8.220969461454322e-05,
673
+ "loss": 0.4241,
674
+ "step": 188
675
+ },
676
+ {
677
+ "epoch": 1.2666666666666666,
678
+ "grad_norm": 0.06365147365999292,
679
+ "learning_rate": 8.178618741049842e-05,
680
+ "loss": 0.4516,
681
+ "step": 190
682
+ },
683
+ {
684
+ "epoch": 1.28,
685
+ "grad_norm": 0.06440909119431051,
686
+ "learning_rate": 8.135881792367686e-05,
687
+ "loss": 0.4047,
688
+ "step": 192
689
+ },
690
+ {
691
+ "epoch": 1.2933333333333334,
692
+ "grad_norm": 0.06734344900628648,
693
+ "learning_rate": 8.092763808298048e-05,
694
+ "loss": 0.4169,
695
+ "step": 194
696
+ },
697
+ {
698
+ "epoch": 1.3066666666666666,
699
+ "grad_norm": 0.05832916804134293,
700
+ "learning_rate": 8.049270028030046e-05,
701
+ "loss": 0.4313,
702
+ "step": 196
703
+ },
704
+ {
705
+ "epoch": 1.32,
706
+ "grad_norm": 0.060432835217476055,
707
+ "learning_rate": 8.005405736415126e-05,
708
+ "loss": 0.4181,
709
+ "step": 198
710
+ },
711
+ {
712
+ "epoch": 1.3333333333333333,
713
+ "grad_norm": 0.3189524387852971,
714
+ "learning_rate": 7.961176263324901e-05,
715
+ "loss": 0.4671,
716
+ "step": 200
717
+ },
718
+ {
719
+ "epoch": 1.3466666666666667,
720
+ "grad_norm": 0.0592761178725548,
721
+ "learning_rate": 7.916586983003533e-05,
722
+ "loss": 0.4399,
723
+ "step": 202
724
+ },
725
+ {
726
+ "epoch": 1.3599999999999999,
727
+ "grad_norm": 0.0709909293526123,
728
+ "learning_rate": 7.871643313414718e-05,
729
+ "loss": 0.4297,
730
+ "step": 204
731
+ },
732
+ {
733
+ "epoch": 1.3733333333333333,
734
+ "grad_norm": 0.06198999527057115,
735
+ "learning_rate": 7.82635071558336e-05,
736
+ "loss": 0.4251,
737
+ "step": 206
738
+ },
739
+ {
740
+ "epoch": 1.3866666666666667,
741
+ "grad_norm": 0.058077551229268935,
742
+ "learning_rate": 7.780714692932002e-05,
743
+ "loss": 0.4105,
744
+ "step": 208
745
+ },
746
+ {
747
+ "epoch": 1.4,
748
+ "grad_norm": 0.06776940923998968,
749
+ "learning_rate": 7.734740790612136e-05,
750
+ "loss": 0.4445,
751
+ "step": 210
752
+ },
753
+ {
754
+ "epoch": 1.4133333333333333,
755
+ "grad_norm": 0.05980241043639003,
756
+ "learning_rate": 7.688434594830392e-05,
757
+ "loss": 0.4049,
758
+ "step": 212
759
+ },
760
+ {
761
+ "epoch": 1.4266666666666667,
762
+ "grad_norm": 0.06075570212356431,
763
+ "learning_rate": 7.641801732169795e-05,
764
+ "loss": 0.4049,
765
+ "step": 214
766
+ },
767
+ {
768
+ "epoch": 1.44,
769
+ "grad_norm": 0.0585436609373402,
770
+ "learning_rate": 7.594847868906076e-05,
771
+ "loss": 0.4265,
772
+ "step": 216
773
+ },
774
+ {
775
+ "epoch": 1.4533333333333334,
776
+ "grad_norm": 0.05886231084821202,
777
+ "learning_rate": 7.547578710319174e-05,
778
+ "loss": 0.4361,
779
+ "step": 218
780
+ },
781
+ {
782
+ "epoch": 1.4666666666666668,
783
+ "grad_norm": 0.05758877919907456,
784
+ "learning_rate": 7.500000000000001e-05,
785
+ "loss": 0.4273,
786
+ "step": 220
787
+ },
788
+ {
789
+ "epoch": 1.48,
790
+ "grad_norm": 0.057186857880065896,
791
+ "learning_rate": 7.452117519152542e-05,
792
+ "loss": 0.3918,
793
+ "step": 222
794
+ },
795
+ {
796
+ "epoch": 1.4933333333333334,
797
+ "grad_norm": 0.060986952045000244,
798
+ "learning_rate": 7.403937085891397e-05,
799
+ "loss": 0.4116,
800
+ "step": 224
801
+ },
802
+ {
803
+ "epoch": 1.5066666666666668,
804
+ "grad_norm": 0.06094291896870185,
805
+ "learning_rate": 7.355464554534837e-05,
806
+ "loss": 0.3968,
807
+ "step": 226
808
+ },
809
+ {
810
+ "epoch": 1.52,
811
+ "grad_norm": 0.058322590431556104,
812
+ "learning_rate": 7.30670581489344e-05,
813
+ "loss": 0.3876,
814
+ "step": 228
815
+ },
816
+ {
817
+ "epoch": 1.5333333333333332,
818
+ "grad_norm": 0.05822076237291155,
819
+ "learning_rate": 7.257666791554448e-05,
820
+ "loss": 0.4272,
821
+ "step": 230
822
+ },
823
+ {
824
+ "epoch": 1.5466666666666666,
825
+ "grad_norm": 0.055094265304100165,
826
+ "learning_rate": 7.20835344316187e-05,
827
+ "loss": 0.4133,
828
+ "step": 232
829
+ },
830
+ {
831
+ "epoch": 1.56,
832
+ "grad_norm": 0.06044900185707112,
833
+ "learning_rate": 7.158771761692464e-05,
834
+ "loss": 0.4061,
835
+ "step": 234
836
+ },
837
+ {
838
+ "epoch": 1.5733333333333333,
839
+ "grad_norm": 0.05589749063648132,
840
+ "learning_rate": 7.108927771727661e-05,
841
+ "loss": 0.407,
842
+ "step": 236
843
+ },
844
+ {
845
+ "epoch": 1.5866666666666667,
846
+ "grad_norm": 0.05920526918754276,
847
+ "learning_rate": 7.058827529721525e-05,
848
+ "loss": 0.3993,
849
+ "step": 238
850
+ },
851
+ {
852
+ "epoch": 1.6,
853
+ "grad_norm": 0.08772211610388515,
854
+ "learning_rate": 7.008477123264848e-05,
855
+ "loss": 0.4208,
856
+ "step": 240
857
+ },
858
+ {
859
+ "epoch": 1.6133333333333333,
860
+ "grad_norm": 0.05570158803300833,
861
+ "learning_rate": 6.957882670345458e-05,
862
+ "loss": 0.405,
863
+ "step": 242
864
+ },
865
+ {
866
+ "epoch": 1.6266666666666667,
867
+ "grad_norm": 0.06563516734346801,
868
+ "learning_rate": 6.90705031860483e-05,
869
+ "loss": 0.4098,
870
+ "step": 244
871
+ },
872
+ {
873
+ "epoch": 1.6400000000000001,
874
+ "grad_norm": 0.05631976426536162,
875
+ "learning_rate": 6.855986244591104e-05,
876
+ "loss": 0.3877,
877
+ "step": 246
878
+ },
879
+ {
880
+ "epoch": 1.6533333333333333,
881
+ "grad_norm": 0.05644442739953386,
882
+ "learning_rate": 6.804696653008575e-05,
883
+ "loss": 0.4134,
884
+ "step": 248
885
+ },
886
+ {
887
+ "epoch": 1.6666666666666665,
888
+ "grad_norm": 0.05275767947492662,
889
+ "learning_rate": 6.753187775963773e-05,
890
+ "loss": 0.4075,
891
+ "step": 250
892
+ },
893
+ {
894
+ "epoch": 1.6800000000000002,
895
+ "grad_norm": 0.05873640121915926,
896
+ "learning_rate": 6.701465872208216e-05,
897
+ "loss": 0.4103,
898
+ "step": 252
899
+ },
900
+ {
901
+ "epoch": 1.6933333333333334,
902
+ "grad_norm": 0.0596209632813038,
903
+ "learning_rate": 6.649537226377915e-05,
904
+ "loss": 0.4368,
905
+ "step": 254
906
+ },
907
+ {
908
+ "epoch": 1.7066666666666666,
909
+ "grad_norm": 0.0550209071778787,
910
+ "learning_rate": 6.59740814822974e-05,
911
+ "loss": 0.4079,
912
+ "step": 256
913
+ },
914
+ {
915
+ "epoch": 1.72,
916
+ "grad_norm": 0.056297483765733,
917
+ "learning_rate": 6.545084971874738e-05,
918
+ "loss": 0.441,
919
+ "step": 258
920
+ },
921
+ {
922
+ "epoch": 1.7333333333333334,
923
+ "grad_norm": 0.15265154617055526,
924
+ "learning_rate": 6.492574055008473e-05,
925
+ "loss": 0.4041,
926
+ "step": 260
927
+ },
928
+ {
929
+ "epoch": 1.7466666666666666,
930
+ "grad_norm": 0.07752909356786238,
931
+ "learning_rate": 6.439881778138531e-05,
932
+ "loss": 0.4041,
933
+ "step": 262
934
+ },
935
+ {
936
+ "epoch": 1.76,
937
+ "grad_norm": 0.08024865113518131,
938
+ "learning_rate": 6.387014543809223e-05,
939
+ "loss": 0.3986,
940
+ "step": 264
941
+ },
942
+ {
943
+ "epoch": 1.7733333333333334,
944
+ "grad_norm": 0.10615717597280923,
945
+ "learning_rate": 6.333978775823631e-05,
946
+ "loss": 0.4134,
947
+ "step": 266
948
+ },
949
+ {
950
+ "epoch": 1.7866666666666666,
951
+ "grad_norm": 0.06710384327076761,
952
+ "learning_rate": 6.280780918463057e-05,
953
+ "loss": 0.3705,
954
+ "step": 268
955
+ },
956
+ {
957
+ "epoch": 1.8,
958
+ "grad_norm": 0.0633674315054036,
959
+ "learning_rate": 6.227427435703997e-05,
960
+ "loss": 0.4157,
961
+ "step": 270
962
+ },
963
+ {
964
+ "epoch": 1.8133333333333335,
965
+ "grad_norm": 0.060851228058216876,
966
+ "learning_rate": 6.173924810432705e-05,
967
+ "loss": 0.4065,
968
+ "step": 272
969
+ },
970
+ {
971
+ "epoch": 1.8266666666666667,
972
+ "grad_norm": 0.058897518477155845,
973
+ "learning_rate": 6.12027954365748e-05,
974
+ "loss": 0.4019,
975
+ "step": 274
976
+ },
977
+ {
978
+ "epoch": 1.8399999999999999,
979
+ "grad_norm": 0.05632347613072352,
980
+ "learning_rate": 6.066498153718735e-05,
981
+ "loss": 0.4142,
982
+ "step": 276
983
+ },
984
+ {
985
+ "epoch": 1.8533333333333335,
986
+ "grad_norm": 0.05684584086680513,
987
+ "learning_rate": 6.012587175496961e-05,
988
+ "loss": 0.4019,
989
+ "step": 278
990
+ },
991
+ {
992
+ "epoch": 1.8666666666666667,
993
+ "grad_norm": 0.054019444337334764,
994
+ "learning_rate": 5.958553159618693e-05,
995
+ "loss": 0.4006,
996
+ "step": 280
997
+ },
998
+ {
999
+ "epoch": 1.88,
1000
+ "grad_norm": 0.05665016004137828,
1001
+ "learning_rate": 5.90440267166055e-05,
1002
+ "loss": 0.411,
1003
+ "step": 282
1004
+ },
1005
+ {
1006
+ "epoch": 1.8933333333333333,
1007
+ "grad_norm": 0.057316286082019274,
1008
+ "learning_rate": 5.850142291351466e-05,
1009
+ "loss": 0.4085,
1010
+ "step": 284
1011
+ },
1012
+ {
1013
+ "epoch": 1.9066666666666667,
1014
+ "grad_norm": 0.08470811257422295,
1015
+ "learning_rate": 5.795778611773197e-05,
1016
+ "loss": 0.3819,
1017
+ "step": 286
1018
+ },
1019
+ {
1020
+ "epoch": 1.92,
1021
+ "grad_norm": 0.05784580025752463,
1022
+ "learning_rate": 5.74131823855921e-05,
1023
+ "loss": 0.3821,
1024
+ "step": 288
1025
+ },
1026
+ {
1027
+ "epoch": 1.9333333333333333,
1028
+ "grad_norm": 0.05663311823528816,
1029
+ "learning_rate": 5.686767789092041e-05,
1030
+ "loss": 0.4154,
1031
+ "step": 290
1032
+ },
1033
+ {
1034
+ "epoch": 1.9466666666666668,
1035
+ "grad_norm": 0.057073777066581295,
1036
+ "learning_rate": 5.6321338916992315e-05,
1037
+ "loss": 0.4135,
1038
+ "step": 292
1039
+ },
1040
+ {
1041
+ "epoch": 1.96,
1042
+ "grad_norm": 0.0574979098693646,
1043
+ "learning_rate": 5.577423184847932e-05,
1044
+ "loss": 0.408,
1045
+ "step": 294
1046
+ },
1047
+ {
1048
+ "epoch": 1.9733333333333334,
1049
+ "grad_norm": 0.05504450544637458,
1050
+ "learning_rate": 5.522642316338268e-05,
1051
+ "loss": 0.4034,
1052
+ "step": 296
1053
+ },
1054
+ {
1055
+ "epoch": 1.9866666666666668,
1056
+ "grad_norm": 0.057266688427656184,
1057
+ "learning_rate": 5.467797942495589e-05,
1058
+ "loss": 0.3741,
1059
+ "step": 298
1060
+ },
1061
+ {
1062
+ "epoch": 2.0,
1063
+ "grad_norm": 0.05613792113707641,
1064
+ "learning_rate": 5.4128967273616625e-05,
1065
+ "loss": 0.3944,
1066
+ "step": 300
1067
+ },
1068
+ {
1069
+ "epoch": 2.013333333333333,
1070
+ "grad_norm": 0.07519534578570336,
1071
+ "learning_rate": 5.357945341884936e-05,
1072
+ "loss": 0.2236,
1073
+ "step": 302
1074
+ },
1075
+ {
1076
+ "epoch": 2.026666666666667,
1077
+ "grad_norm": 0.18176383216046363,
1078
+ "learning_rate": 5.3029504631099694e-05,
1079
+ "loss": 0.2312,
1080
+ "step": 304
1081
+ },
1082
+ {
1083
+ "epoch": 2.04,
1084
+ "grad_norm": 0.0608749623913546,
1085
+ "learning_rate": 5.247918773366112e-05,
1086
+ "loss": 0.2194,
1087
+ "step": 306
1088
+ },
1089
+ {
1090
+ "epoch": 2.0533333333333332,
1091
+ "grad_norm": 0.06549466194373386,
1092
+ "learning_rate": 5.1928569594555524e-05,
1093
+ "loss": 0.2038,
1094
+ "step": 308
1095
+ },
1096
+ {
1097
+ "epoch": 2.066666666666667,
1098
+ "grad_norm": 0.06841206457163714,
1099
+ "learning_rate": 5.1377717118408105e-05,
1100
+ "loss": 0.2103,
1101
+ "step": 310
1102
+ },
1103
+ {
1104
+ "epoch": 2.08,
1105
+ "grad_norm": 0.06431960601426534,
1106
+ "learning_rate": 5.0826697238317935e-05,
1107
+ "loss": 0.1899,
1108
+ "step": 312
1109
+ },
1110
+ {
1111
+ "epoch": 2.0933333333333333,
1112
+ "grad_norm": 0.061164578906699046,
1113
+ "learning_rate": 5.027557690772503e-05,
1114
+ "loss": 0.1955,
1115
+ "step": 314
1116
+ },
1117
+ {
1118
+ "epoch": 2.1066666666666665,
1119
+ "grad_norm": 0.05806737719217297,
1120
+ "learning_rate": 4.972442309227498e-05,
1121
+ "loss": 0.1871,
1122
+ "step": 316
1123
+ },
1124
+ {
1125
+ "epoch": 2.12,
1126
+ "grad_norm": 0.10638328645893626,
1127
+ "learning_rate": 4.917330276168208e-05,
1128
+ "loss": 0.1926,
1129
+ "step": 318
1130
+ },
1131
+ {
1132
+ "epoch": 2.1333333333333333,
1133
+ "grad_norm": 0.055513863609778974,
1134
+ "learning_rate": 4.8622282881591906e-05,
1135
+ "loss": 0.2008,
1136
+ "step": 320
1137
+ },
1138
+ {
1139
+ "epoch": 2.1466666666666665,
1140
+ "grad_norm": 0.05781185580562024,
1141
+ "learning_rate": 4.8071430405444474e-05,
1142
+ "loss": 0.2001,
1143
+ "step": 322
1144
+ },
1145
+ {
1146
+ "epoch": 2.16,
1147
+ "grad_norm": 0.058407688794793834,
1148
+ "learning_rate": 4.7520812266338885e-05,
1149
+ "loss": 0.2091,
1150
+ "step": 324
1151
+ },
1152
+ {
1153
+ "epoch": 2.1733333333333333,
1154
+ "grad_norm": 0.05455993945014677,
1155
+ "learning_rate": 4.697049536890033e-05,
1156
+ "loss": 0.1943,
1157
+ "step": 326
1158
+ },
1159
+ {
1160
+ "epoch": 2.1866666666666665,
1161
+ "grad_norm": 0.10418377423186777,
1162
+ "learning_rate": 4.642054658115067e-05,
1163
+ "loss": 0.2101,
1164
+ "step": 328
1165
+ },
1166
+ {
1167
+ "epoch": 2.2,
1168
+ "grad_norm": 0.058762085061184646,
1169
+ "learning_rate": 4.5871032726383386e-05,
1170
+ "loss": 0.199,
1171
+ "step": 330
1172
+ },
1173
+ {
1174
+ "epoch": 2.2133333333333334,
1175
+ "grad_norm": 0.05961716033762566,
1176
+ "learning_rate": 4.5322020575044114e-05,
1177
+ "loss": 0.1945,
1178
+ "step": 332
1179
+ },
1180
+ {
1181
+ "epoch": 2.2266666666666666,
1182
+ "grad_norm": 0.06064491694409506,
1183
+ "learning_rate": 4.477357683661734e-05,
1184
+ "loss": 0.2023,
1185
+ "step": 334
1186
+ },
1187
+ {
1188
+ "epoch": 2.24,
1189
+ "grad_norm": 0.12224153955185721,
1190
+ "learning_rate": 4.4225768151520694e-05,
1191
+ "loss": 0.2372,
1192
+ "step": 336
1193
+ },
1194
+ {
1195
+ "epoch": 2.2533333333333334,
1196
+ "grad_norm": 0.06273415054348162,
1197
+ "learning_rate": 4.367866108300769e-05,
1198
+ "loss": 0.202,
1199
+ "step": 338
1200
+ },
1201
+ {
1202
+ "epoch": 2.2666666666666666,
1203
+ "grad_norm": 0.05439313011616356,
1204
+ "learning_rate": 4.3132322109079596e-05,
1205
+ "loss": 0.1838,
1206
+ "step": 340
1207
+ },
1208
+ {
1209
+ "epoch": 2.2800000000000002,
1210
+ "grad_norm": 0.05408796882713708,
1211
+ "learning_rate": 4.2586817614407895e-05,
1212
+ "loss": 0.2041,
1213
+ "step": 342
1214
+ },
1215
+ {
1216
+ "epoch": 2.2933333333333334,
1217
+ "grad_norm": 0.14961779038669223,
1218
+ "learning_rate": 4.2042213882268025e-05,
1219
+ "loss": 0.217,
1220
+ "step": 344
1221
+ },
1222
+ {
1223
+ "epoch": 2.3066666666666666,
1224
+ "grad_norm": 0.06357828772862752,
1225
+ "learning_rate": 4.149857708648536e-05,
1226
+ "loss": 0.2003,
1227
+ "step": 346
1228
+ },
1229
+ {
1230
+ "epoch": 2.32,
1231
+ "grad_norm": 0.054464894143134636,
1232
+ "learning_rate": 4.095597328339452e-05,
1233
+ "loss": 0.1909,
1234
+ "step": 348
1235
+ },
1236
+ {
1237
+ "epoch": 2.3333333333333335,
1238
+ "grad_norm": 0.066782998686637,
1239
+ "learning_rate": 4.0414468403813095e-05,
1240
+ "loss": 0.205,
1241
+ "step": 350
1242
+ },
1243
+ {
1244
+ "epoch": 2.3466666666666667,
1245
+ "grad_norm": 0.10946146387161931,
1246
+ "learning_rate": 3.9874128245030404e-05,
1247
+ "loss": 0.204,
1248
+ "step": 352
1249
+ },
1250
+ {
1251
+ "epoch": 2.36,
1252
+ "grad_norm": 0.09072556796395603,
1253
+ "learning_rate": 3.933501846281267e-05,
1254
+ "loss": 0.2021,
1255
+ "step": 354
1256
+ },
1257
+ {
1258
+ "epoch": 2.3733333333333335,
1259
+ "grad_norm": 0.08641355840276257,
1260
+ "learning_rate": 3.879720456342521e-05,
1261
+ "loss": 0.2204,
1262
+ "step": 356
1263
+ },
1264
+ {
1265
+ "epoch": 2.3866666666666667,
1266
+ "grad_norm": 0.0733857764459229,
1267
+ "learning_rate": 3.826075189567296e-05,
1268
+ "loss": 0.2012,
1269
+ "step": 358
1270
+ },
1271
+ {
1272
+ "epoch": 2.4,
1273
+ "grad_norm": 0.0626333235413589,
1274
+ "learning_rate": 3.772572564296005e-05,
1275
+ "loss": 0.2053,
1276
+ "step": 360
1277
+ },
1278
+ {
1279
+ "epoch": 2.413333333333333,
1280
+ "grad_norm": 0.06594691744680978,
1281
+ "learning_rate": 3.719219081536942e-05,
1282
+ "loss": 0.1971,
1283
+ "step": 362
1284
+ },
1285
+ {
1286
+ "epoch": 2.4266666666666667,
1287
+ "grad_norm": 0.06571408902511346,
1288
+ "learning_rate": 3.666021224176369e-05,
1289
+ "loss": 0.1977,
1290
+ "step": 364
1291
+ },
1292
+ {
1293
+ "epoch": 2.44,
1294
+ "grad_norm": 0.0890355148563959,
1295
+ "learning_rate": 3.612985456190778e-05,
1296
+ "loss": 0.1974,
1297
+ "step": 366
1298
+ },
1299
+ {
1300
+ "epoch": 2.453333333333333,
1301
+ "grad_norm": 0.05984188182013961,
1302
+ "learning_rate": 3.56011822186147e-05,
1303
+ "loss": 0.2045,
1304
+ "step": 368
1305
+ },
1306
+ {
1307
+ "epoch": 2.466666666666667,
1308
+ "grad_norm": 0.05840811324090727,
1309
+ "learning_rate": 3.5074259449915284e-05,
1310
+ "loss": 0.1971,
1311
+ "step": 370
1312
+ },
1313
+ {
1314
+ "epoch": 2.48,
1315
+ "grad_norm": 0.05496682361577455,
1316
+ "learning_rate": 3.4549150281252636e-05,
1317
+ "loss": 0.2088,
1318
+ "step": 372
1319
+ },
1320
+ {
1321
+ "epoch": 2.493333333333333,
1322
+ "grad_norm": 0.056504022577883756,
1323
+ "learning_rate": 3.40259185177026e-05,
1324
+ "loss": 0.2017,
1325
+ "step": 374
1326
+ },
1327
+ {
1328
+ "epoch": 2.506666666666667,
1329
+ "grad_norm": 0.06329898582468307,
1330
+ "learning_rate": 3.350462773622086e-05,
1331
+ "loss": 0.2064,
1332
+ "step": 376
1333
+ },
1334
+ {
1335
+ "epoch": 2.52,
1336
+ "grad_norm": 0.05916890402008683,
1337
+ "learning_rate": 3.298534127791785e-05,
1338
+ "loss": 0.211,
1339
+ "step": 378
1340
+ },
1341
+ {
1342
+ "epoch": 2.533333333333333,
1343
+ "grad_norm": 0.05979626765953065,
1344
+ "learning_rate": 3.2468122240362284e-05,
1345
+ "loss": 0.2044,
1346
+ "step": 380
1347
+ },
1348
+ {
1349
+ "epoch": 2.546666666666667,
1350
+ "grad_norm": 0.06045023498620747,
1351
+ "learning_rate": 3.1953033469914276e-05,
1352
+ "loss": 0.2074,
1353
+ "step": 382
1354
+ },
1355
+ {
1356
+ "epoch": 2.56,
1357
+ "grad_norm": 0.06281675933045895,
1358
+ "learning_rate": 3.144013755408895e-05,
1359
+ "loss": 0.2146,
1360
+ "step": 384
1361
+ },
1362
+ {
1363
+ "epoch": 2.5733333333333333,
1364
+ "grad_norm": 0.07056631468249065,
1365
+ "learning_rate": 3.0929496813951694e-05,
1366
+ "loss": 0.1853,
1367
+ "step": 386
1368
+ },
1369
+ {
1370
+ "epoch": 2.586666666666667,
1371
+ "grad_norm": 0.06942161032122679,
1372
+ "learning_rate": 3.042117329654544e-05,
1373
+ "loss": 0.1916,
1374
+ "step": 388
1375
+ },
1376
+ {
1377
+ "epoch": 2.6,
1378
+ "grad_norm": 0.06027569169276504,
1379
+ "learning_rate": 2.991522876735154e-05,
1380
+ "loss": 0.1946,
1381
+ "step": 390
1382
+ },
1383
+ {
1384
+ "epoch": 2.6133333333333333,
1385
+ "grad_norm": 0.05374331020259679,
1386
+ "learning_rate": 2.9411724702784758e-05,
1387
+ "loss": 0.1948,
1388
+ "step": 392
1389
+ },
1390
+ {
1391
+ "epoch": 2.626666666666667,
1392
+ "grad_norm": 0.0542758123431381,
1393
+ "learning_rate": 2.89107222827234e-05,
1394
+ "loss": 0.1912,
1395
+ "step": 394
1396
+ },
1397
+ {
1398
+ "epoch": 2.64,
1399
+ "grad_norm": 0.0571540947080613,
1400
+ "learning_rate": 2.8412282383075363e-05,
1401
+ "loss": 0.1984,
1402
+ "step": 396
1403
+ },
1404
+ {
1405
+ "epoch": 2.6533333333333333,
1406
+ "grad_norm": 0.05627882046395902,
1407
+ "learning_rate": 2.79164655683813e-05,
1408
+ "loss": 0.2158,
1409
+ "step": 398
1410
+ },
1411
+ {
1412
+ "epoch": 2.6666666666666665,
1413
+ "grad_norm": 0.05259956524533675,
1414
+ "learning_rate": 2.7423332084455544e-05,
1415
+ "loss": 0.1747,
1416
+ "step": 400
1417
+ },
1418
+ {
1419
+ "epoch": 2.68,
1420
+ "grad_norm": 0.05093786217012115,
1421
+ "learning_rate": 2.693294185106562e-05,
1422
+ "loss": 0.2026,
1423
+ "step": 402
1424
+ },
1425
+ {
1426
+ "epoch": 2.6933333333333334,
1427
+ "grad_norm": 0.05277547570213214,
1428
+ "learning_rate": 2.644535445465164e-05,
1429
+ "loss": 0.1813,
1430
+ "step": 404
1431
+ },
1432
+ {
1433
+ "epoch": 2.7066666666666666,
1434
+ "grad_norm": 0.05303823378689789,
1435
+ "learning_rate": 2.5960629141086012e-05,
1436
+ "loss": 0.1819,
1437
+ "step": 406
1438
+ },
1439
+ {
1440
+ "epoch": 2.7199999999999998,
1441
+ "grad_norm": 0.08344410667249319,
1442
+ "learning_rate": 2.547882480847461e-05,
1443
+ "loss": 0.2231,
1444
+ "step": 408
1445
+ },
1446
+ {
1447
+ "epoch": 2.7333333333333334,
1448
+ "grad_norm": 0.05610742314142284,
1449
+ "learning_rate": 2.500000000000001e-05,
1450
+ "loss": 0.1906,
1451
+ "step": 410
1452
+ },
1453
+ {
1454
+ "epoch": 2.7466666666666666,
1455
+ "grad_norm": 0.05772628938455535,
1456
+ "learning_rate": 2.4524212896808263e-05,
1457
+ "loss": 0.1994,
1458
+ "step": 412
1459
+ },
1460
+ {
1461
+ "epoch": 2.76,
1462
+ "grad_norm": 0.05103502451047731,
1463
+ "learning_rate": 2.405152131093926e-05,
1464
+ "loss": 0.1798,
1465
+ "step": 414
1466
+ },
1467
+ {
1468
+ "epoch": 2.7733333333333334,
1469
+ "grad_norm": 0.05325999726886616,
1470
+ "learning_rate": 2.3581982678302063e-05,
1471
+ "loss": 0.1914,
1472
+ "step": 416
1473
+ },
1474
+ {
1475
+ "epoch": 2.7866666666666666,
1476
+ "grad_norm": 0.059490514144748714,
1477
+ "learning_rate": 2.3115654051696095e-05,
1478
+ "loss": 0.1951,
1479
+ "step": 418
1480
+ },
1481
+ {
1482
+ "epoch": 2.8,
1483
+ "grad_norm": 0.04984418568151086,
1484
+ "learning_rate": 2.2652592093878666e-05,
1485
+ "loss": 0.1808,
1486
+ "step": 420
1487
+ },
1488
+ {
1489
+ "epoch": 2.8133333333333335,
1490
+ "grad_norm": 0.05810409569821001,
1491
+ "learning_rate": 2.219285307067997e-05,
1492
+ "loss": 0.203,
1493
+ "step": 422
1494
+ },
1495
+ {
1496
+ "epoch": 2.8266666666666667,
1497
+ "grad_norm": 0.06033075206383965,
1498
+ "learning_rate": 2.1736492844166407e-05,
1499
+ "loss": 0.2046,
1500
+ "step": 424
1501
+ },
1502
+ {
1503
+ "epoch": 2.84,
1504
+ "grad_norm": 0.05658423500567751,
1505
+ "learning_rate": 2.128356686585282e-05,
1506
+ "loss": 0.1889,
1507
+ "step": 426
1508
+ },
1509
+ {
1510
+ "epoch": 2.8533333333333335,
1511
+ "grad_norm": 0.05504606313698527,
1512
+ "learning_rate": 2.0834130169964692e-05,
1513
+ "loss": 0.2025,
1514
+ "step": 428
1515
+ },
1516
+ {
1517
+ "epoch": 2.8666666666666667,
1518
+ "grad_norm": 0.05661096276616458,
1519
+ "learning_rate": 2.0388237366751006e-05,
1520
+ "loss": 0.2063,
1521
+ "step": 430
1522
+ },
1523
+ {
1524
+ "epoch": 2.88,
1525
+ "grad_norm": 0.0491417808278452,
1526
+ "learning_rate": 1.9945942635848748e-05,
1527
+ "loss": 0.1878,
1528
+ "step": 432
1529
+ },
1530
+ {
1531
+ "epoch": 2.8933333333333335,
1532
+ "grad_norm": 0.05320288379451015,
1533
+ "learning_rate": 1.950729971969955e-05,
1534
+ "loss": 0.1934,
1535
+ "step": 434
1536
+ },
1537
+ {
1538
+ "epoch": 2.9066666666666667,
1539
+ "grad_norm": 0.06582732049676977,
1540
+ "learning_rate": 1.9072361917019536e-05,
1541
+ "loss": 0.1912,
1542
+ "step": 436
1543
+ },
1544
+ {
1545
+ "epoch": 2.92,
1546
+ "grad_norm": 0.05333512123441002,
1547
+ "learning_rate": 1.8641182076323148e-05,
1548
+ "loss": 0.2072,
1549
+ "step": 438
1550
+ },
1551
+ {
1552
+ "epoch": 2.9333333333333336,
1553
+ "grad_norm": 0.05868667850689424,
1554
+ "learning_rate": 1.821381258950161e-05,
1555
+ "loss": 0.206,
1556
+ "step": 440
1557
+ },
1558
+ {
1559
+ "epoch": 2.9466666666666668,
1560
+ "grad_norm": 0.05637285498837677,
1561
+ "learning_rate": 1.7790305385456795e-05,
1562
+ "loss": 0.1879,
1563
+ "step": 442
1564
+ },
1565
+ {
1566
+ "epoch": 2.96,
1567
+ "grad_norm": 0.05386393235541858,
1568
+ "learning_rate": 1.7370711923791567e-05,
1569
+ "loss": 0.1958,
1570
+ "step": 444
1571
+ },
1572
+ {
1573
+ "epoch": 2.9733333333333336,
1574
+ "grad_norm": 0.05299769413689916,
1575
+ "learning_rate": 1.6955083188556947e-05,
1576
+ "loss": 0.1925,
1577
+ "step": 446
1578
+ },
1579
+ {
1580
+ "epoch": 2.986666666666667,
1581
+ "grad_norm": 0.05133518316661849,
1582
+ "learning_rate": 1.6543469682057106e-05,
1583
+ "loss": 0.1915,
1584
+ "step": 448
1585
+ },
1586
+ {
1587
+ "epoch": 3.0,
1588
+ "grad_norm": 0.04885194532692743,
1589
+ "learning_rate": 1.6135921418712956e-05,
1590
+ "loss": 0.1739,
1591
+ "step": 450
1592
+ },
1593
+ {
1594
+ "epoch": 3.013333333333333,
1595
+ "grad_norm": 0.06986956461906896,
1596
+ "learning_rate": 1.5732487918985018e-05,
1597
+ "loss": 0.1038,
1598
+ "step": 452
1599
+ },
1600
+ {
1601
+ "epoch": 3.026666666666667,
1602
+ "grad_norm": 0.04645876637991321,
1603
+ "learning_rate": 1.5333218203356243e-05,
1604
+ "loss": 0.1015,
1605
+ "step": 454
1606
+ },
1607
+ {
1608
+ "epoch": 3.04,
1609
+ "grad_norm": 0.07283995125204705,
1610
+ "learning_rate": 1.4938160786375572e-05,
1611
+ "loss": 0.0925,
1612
+ "step": 456
1613
+ },
1614
+ {
1615
+ "epoch": 3.0533333333333332,
1616
+ "grad_norm": 0.07910413235666625,
1617
+ "learning_rate": 1.4547363670763137e-05,
1618
+ "loss": 0.0924,
1619
+ "step": 458
1620
+ },
1621
+ {
1622
+ "epoch": 3.066666666666667,
1623
+ "grad_norm": 0.045001557247815696,
1624
+ "learning_rate": 1.4160874341577446e-05,
1625
+ "loss": 0.0803,
1626
+ "step": 460
1627
+ },
1628
+ {
1629
+ "epoch": 3.08,
1630
+ "grad_norm": 0.06093464723725437,
1631
+ "learning_rate": 1.3778739760445552e-05,
1632
+ "loss": 0.1234,
1633
+ "step": 462
1634
+ },
1635
+ {
1636
+ "epoch": 3.0933333333333333,
1637
+ "grad_norm": 0.05094873498049632,
1638
+ "learning_rate": 1.3401006359856915e-05,
1639
+ "loss": 0.0995,
1640
+ "step": 464
1641
+ },
1642
+ {
1643
+ "epoch": 3.1066666666666665,
1644
+ "grad_norm": 0.047212663662106066,
1645
+ "learning_rate": 1.3027720037521397e-05,
1646
+ "loss": 0.0946,
1647
+ "step": 466
1648
+ },
1649
+ {
1650
+ "epoch": 3.12,
1651
+ "grad_norm": 0.04483003730663884,
1652
+ "learning_rate": 1.2658926150792322e-05,
1653
+ "loss": 0.0878,
1654
+ "step": 468
1655
+ },
1656
+ {
1657
+ "epoch": 3.1333333333333333,
1658
+ "grad_norm": 0.052921476974263,
1659
+ "learning_rate": 1.2294669511155193e-05,
1660
+ "loss": 0.0912,
1661
+ "step": 470
1662
+ },
1663
+ {
1664
+ "epoch": 3.1466666666666665,
1665
+ "grad_norm": 0.06418992888305905,
1666
+ "learning_rate": 1.1934994378782772e-05,
1667
+ "loss": 0.0883,
1668
+ "step": 472
1669
+ },
1670
+ {
1671
+ "epoch": 3.16,
1672
+ "grad_norm": 0.046014320213057874,
1673
+ "learning_rate": 1.157994445715706e-05,
1674
+ "loss": 0.0841,
1675
+ "step": 474
1676
+ },
1677
+ {
1678
+ "epoch": 3.1733333333333333,
1679
+ "grad_norm": 0.04373558000132941,
1680
+ "learning_rate": 1.1229562887758926e-05,
1681
+ "loss": 0.086,
1682
+ "step": 476
1683
+ },
1684
+ {
1685
+ "epoch": 3.1866666666666665,
1686
+ "grad_norm": 0.04549644276317006,
1687
+ "learning_rate": 1.0883892244826172e-05,
1688
+ "loss": 0.0841,
1689
+ "step": 478
1690
+ },
1691
+ {
1692
+ "epoch": 3.2,
1693
+ "grad_norm": 0.04499841039501619,
1694
+ "learning_rate": 1.0542974530180327e-05,
1695
+ "loss": 0.0854,
1696
+ "step": 480
1697
+ },
1698
+ {
1699
+ "epoch": 3.2133333333333334,
1700
+ "grad_norm": 0.04458813671986281,
1701
+ "learning_rate": 1.0206851168123077e-05,
1702
+ "loss": 0.0806,
1703
+ "step": 482
1704
+ },
1705
+ {
1706
+ "epoch": 3.2266666666666666,
1707
+ "grad_norm": 0.04538958754859135,
1708
+ "learning_rate": 9.875563000402948e-06,
1709
+ "loss": 0.0909,
1710
+ "step": 484
1711
+ },
1712
+ {
1713
+ "epoch": 3.24,
1714
+ "grad_norm": 0.04676100575004549,
1715
+ "learning_rate": 9.549150281252633e-06,
1716
+ "loss": 0.0867,
1717
+ "step": 486
1718
+ },
1719
+ {
1720
+ "epoch": 3.2533333333333334,
1721
+ "grad_norm": 0.04775667156033876,
1722
+ "learning_rate": 9.227652672497761e-06,
1723
+ "loss": 0.0837,
1724
+ "step": 488
1725
+ },
1726
+ {
1727
+ "epoch": 3.2666666666666666,
1728
+ "grad_norm": 0.04871933401332665,
1729
+ "learning_rate": 8.911109238737747e-06,
1730
+ "loss": 0.0905,
1731
+ "step": 490
1732
+ },
1733
+ {
1734
+ "epoch": 3.2800000000000002,
1735
+ "grad_norm": 0.048251061213709735,
1736
+ "learning_rate": 8.599558442598998e-06,
1737
+ "loss": 0.0835,
1738
+ "step": 492
1739
+ },
1740
+ {
1741
+ "epoch": 3.2933333333333334,
1742
+ "grad_norm": 0.044194676928720145,
1743
+ "learning_rate": 8.293038140061515e-06,
1744
+ "loss": 0.0821,
1745
+ "step": 494
1746
+ },
1747
+ {
1748
+ "epoch": 3.3066666666666666,
1749
+ "grad_norm": 0.041166919617420104,
1750
+ "learning_rate": 7.991585575858961e-06,
1751
+ "loss": 0.0771,
1752
+ "step": 496
1753
+ },
1754
+ {
1755
+ "epoch": 3.32,
1756
+ "grad_norm": 0.04340450144455652,
1757
+ "learning_rate": 7.695237378953223e-06,
1758
+ "loss": 0.0856,
1759
+ "step": 498
1760
+ },
1761
+ {
1762
+ "epoch": 3.3333333333333335,
1763
+ "grad_norm": 0.04482578603744737,
1764
+ "learning_rate": 7.404029558083653e-06,
1765
+ "loss": 0.091,
1766
+ "step": 500
1767
+ },
1768
+ {
1769
+ "epoch": 3.3466666666666667,
1770
+ "grad_norm": 0.0423271388459505,
1771
+ "learning_rate": 7.1179974973916486e-06,
1772
+ "loss": 0.0982,
1773
+ "step": 502
1774
+ },
1775
+ {
1776
+ "epoch": 3.36,
1777
+ "grad_norm": 0.04729150303046179,
1778
+ "learning_rate": 6.837175952121306e-06,
1779
+ "loss": 0.0897,
1780
+ "step": 504
1781
+ },
1782
+ {
1783
+ "epoch": 3.3733333333333335,
1784
+ "grad_norm": 0.043663930554440095,
1785
+ "learning_rate": 6.561599044396288e-06,
1786
+ "loss": 0.0805,
1787
+ "step": 506
1788
+ },
1789
+ {
1790
+ "epoch": 3.3866666666666667,
1791
+ "grad_norm": 0.047396034103113265,
1792
+ "learning_rate": 6.291300259073724e-06,
1793
+ "loss": 0.0873,
1794
+ "step": 508
1795
+ },
1796
+ {
1797
+ "epoch": 3.4,
1798
+ "grad_norm": 0.041607037767040306,
1799
+ "learning_rate": 6.026312439675552e-06,
1800
+ "loss": 0.0877,
1801
+ "step": 510
1802
+ },
1803
+ {
1804
+ "epoch": 3.413333333333333,
1805
+ "grad_norm": 0.04570055978863104,
1806
+ "learning_rate": 5.766667784397706e-06,
1807
+ "loss": 0.0842,
1808
+ "step": 512
1809
+ },
1810
+ {
1811
+ "epoch": 3.4266666666666667,
1812
+ "grad_norm": 0.047084915674548235,
1813
+ "learning_rate": 5.512397842197847e-06,
1814
+ "loss": 0.0827,
1815
+ "step": 514
1816
+ },
1817
+ {
1818
+ "epoch": 3.44,
1819
+ "grad_norm": 0.04248308044077154,
1820
+ "learning_rate": 5.263533508961827e-06,
1821
+ "loss": 0.0872,
1822
+ "step": 516
1823
+ },
1824
+ {
1825
+ "epoch": 3.453333333333333,
1826
+ "grad_norm": 0.0431950346712709,
1827
+ "learning_rate": 5.020105023749644e-06,
1828
+ "loss": 0.0799,
1829
+ "step": 518
1830
+ },
1831
+ {
1832
+ "epoch": 3.466666666666667,
1833
+ "grad_norm": 0.042080373582692975,
1834
+ "learning_rate": 4.782141965121128e-06,
1835
+ "loss": 0.0848,
1836
+ "step": 520
1837
+ },
1838
+ {
1839
+ "epoch": 3.48,
1840
+ "grad_norm": 0.04306063391695332,
1841
+ "learning_rate": 4.549673247541875e-06,
1842
+ "loss": 0.0856,
1843
+ "step": 522
1844
+ },
1845
+ {
1846
+ "epoch": 3.493333333333333,
1847
+ "grad_norm": 0.04068878744398977,
1848
+ "learning_rate": 4.322727117869951e-06,
1849
+ "loss": 0.0839,
1850
+ "step": 524
1851
+ },
1852
+ {
1853
+ "epoch": 3.506666666666667,
1854
+ "grad_norm": 0.04265900688561506,
1855
+ "learning_rate": 4.101331151923649e-06,
1856
+ "loss": 0.0835,
1857
+ "step": 526
1858
+ },
1859
+ {
1860
+ "epoch": 3.52,
1861
+ "grad_norm": 0.04420106611259069,
1862
+ "learning_rate": 3.885512251130763e-06,
1863
+ "loss": 0.081,
1864
+ "step": 528
1865
+ },
1866
+ {
1867
+ "epoch": 3.533333333333333,
1868
+ "grad_norm": 0.04448511152443269,
1869
+ "learning_rate": 3.675296639259912e-06,
1870
+ "loss": 0.0781,
1871
+ "step": 530
1872
+ },
1873
+ {
1874
+ "epoch": 3.546666666666667,
1875
+ "grad_norm": 0.0497215492121585,
1876
+ "learning_rate": 3.470709859234084e-06,
1877
+ "loss": 0.0861,
1878
+ "step": 532
1879
+ },
1880
+ {
1881
+ "epoch": 3.56,
1882
+ "grad_norm": 0.04327001143276467,
1883
+ "learning_rate": 3.271776770026963e-06,
1884
+ "loss": 0.0821,
1885
+ "step": 534
1886
+ },
1887
+ {
1888
+ "epoch": 3.5733333333333333,
1889
+ "grad_norm": 0.04640151743831662,
1890
+ "learning_rate": 3.078521543642399e-06,
1891
+ "loss": 0.0832,
1892
+ "step": 536
1893
+ },
1894
+ {
1895
+ "epoch": 3.586666666666667,
1896
+ "grad_norm": 0.04561248756380693,
1897
+ "learning_rate": 2.890967662177285e-06,
1898
+ "loss": 0.0825,
1899
+ "step": 538
1900
+ },
1901
+ {
1902
+ "epoch": 3.6,
1903
+ "grad_norm": 0.044823431840851795,
1904
+ "learning_rate": 2.7091379149682685e-06,
1905
+ "loss": 0.0855,
1906
+ "step": 540
1907
+ },
1908
+ {
1909
+ "epoch": 3.6133333333333333,
1910
+ "grad_norm": 0.04467387500603864,
1911
+ "learning_rate": 2.533054395822704e-06,
1912
+ "loss": 0.0808,
1913
+ "step": 542
1914
+ },
1915
+ {
1916
+ "epoch": 3.626666666666667,
1917
+ "grad_norm": 0.04309386698570381,
1918
+ "learning_rate": 2.362738500334055e-06,
1919
+ "loss": 0.0854,
1920
+ "step": 544
1921
+ },
1922
+ {
1923
+ "epoch": 3.64,
1924
+ "grad_norm": 0.044664454082356274,
1925
+ "learning_rate": 2.1982109232821178e-06,
1926
+ "loss": 0.0789,
1927
+ "step": 546
1928
+ },
1929
+ {
1930
+ "epoch": 3.6533333333333333,
1931
+ "grad_norm": 0.04716609021143504,
1932
+ "learning_rate": 2.0394916561185083e-06,
1933
+ "loss": 0.0816,
1934
+ "step": 548
1935
+ },
1936
+ {
1937
+ "epoch": 3.6666666666666665,
1938
+ "grad_norm": 0.04680056577205041,
1939
+ "learning_rate": 1.8865999845374793e-06,
1940
+ "loss": 0.0852,
1941
+ "step": 550
1942
+ },
1943
+ {
1944
+ "epoch": 3.68,
1945
+ "grad_norm": 0.04094899680731965,
1946
+ "learning_rate": 1.7395544861325718e-06,
1947
+ "loss": 0.0825,
1948
+ "step": 552
1949
+ },
1950
+ {
1951
+ "epoch": 3.6933333333333334,
1952
+ "grad_norm": 0.04513598017091709,
1953
+ "learning_rate": 1.5983730281392662e-06,
1954
+ "loss": 0.0844,
1955
+ "step": 554
1956
+ },
1957
+ {
1958
+ "epoch": 3.7066666666666666,
1959
+ "grad_norm": 0.04447335757534387,
1960
+ "learning_rate": 1.463072765264001e-06,
1961
+ "loss": 0.0795,
1962
+ "step": 556
1963
+ },
1964
+ {
1965
+ "epoch": 3.7199999999999998,
1966
+ "grad_norm": 0.05017281858396558,
1967
+ "learning_rate": 1.333670137599713e-06,
1968
+ "loss": 0.0863,
1969
+ "step": 558
1970
+ },
1971
+ {
1972
+ "epoch": 3.7333333333333334,
1973
+ "grad_norm": 0.04423261507584507,
1974
+ "learning_rate": 1.210180868628219e-06,
1975
+ "loss": 0.0754,
1976
+ "step": 560
1977
+ },
1978
+ {
1979
+ "epoch": 3.7466666666666666,
1980
+ "grad_norm": 0.04570867789002808,
1981
+ "learning_rate": 1.0926199633097157e-06,
1982
+ "loss": 0.0849,
1983
+ "step": 562
1984
+ },
1985
+ {
1986
+ "epoch": 3.76,
1987
+ "grad_norm": 0.04507390589448999,
1988
+ "learning_rate": 9.810017062595322e-07,
1989
+ "loss": 0.0806,
1990
+ "step": 564
1991
+ },
1992
+ {
1993
+ "epoch": 3.7733333333333334,
1994
+ "grad_norm": 0.04677585146978537,
1995
+ "learning_rate": 8.753396600124253e-07,
1996
+ "loss": 0.0888,
1997
+ "step": 566
1998
+ },
1999
+ {
2000
+ "epoch": 3.7866666666666666,
2001
+ "grad_norm": 0.04312088768971057,
2002
+ "learning_rate": 7.756466633746407e-07,
2003
+ "loss": 0.0796,
2004
+ "step": 568
2005
+ },
2006
+ {
2007
+ "epoch": 3.8,
2008
+ "grad_norm": 0.0394326107141489,
2009
+ "learning_rate": 6.819348298638839e-07,
2010
+ "loss": 0.0788,
2011
+ "step": 570
2012
+ },
2013
+ {
2014
+ "epoch": 3.8133333333333335,
2015
+ "grad_norm": 0.042695812138021566,
2016
+ "learning_rate": 5.9421554623742e-07,
2017
+ "loss": 0.0754,
2018
+ "step": 572
2019
+ },
2020
+ {
2021
+ "epoch": 3.8266666666666667,
2022
+ "grad_norm": 0.0439412303235543,
2023
+ "learning_rate": 5.124994711084963e-07,
2024
+ "loss": 0.0846,
2025
+ "step": 574
2026
+ },
2027
+ {
2028
+ "epoch": 3.84,
2029
+ "grad_norm": 0.039293878670403605,
2030
+ "learning_rate": 4.367965336512403e-07,
2031
+ "loss": 0.0776,
2032
+ "step": 576
2033
+ },
2034
+ {
2035
+ "epoch": 3.8533333333333335,
2036
+ "grad_norm": 0.043627292403458834,
2037
+ "learning_rate": 3.6711593239417973e-07,
2038
+ "loss": 0.0782,
2039
+ "step": 578
2040
+ },
2041
+ {
2042
+ "epoch": 3.8666666666666667,
2043
+ "grad_norm": 0.04213940119937548,
2044
+ "learning_rate": 3.034661341025258e-07,
2045
+ "loss": 0.0861,
2046
+ "step": 580
2047
+ },
2048
+ {
2049
+ "epoch": 3.88,
2050
+ "grad_norm": 0.04373997508644139,
2051
+ "learning_rate": 2.458548727494292e-07,
2052
+ "loss": 0.0891,
2053
+ "step": 582
2054
+ },
2055
+ {
2056
+ "epoch": 3.8933333333333335,
2057
+ "grad_norm": 0.047501079719067495,
2058
+ "learning_rate": 1.942891485762044e-07,
2059
+ "loss": 0.0862,
2060
+ "step": 584
2061
+ },
2062
+ {
2063
+ "epoch": 3.9066666666666667,
2064
+ "grad_norm": 0.04330962300407197,
2065
+ "learning_rate": 1.4877522724175973e-07,
2066
+ "loss": 0.0804,
2067
+ "step": 586
2068
+ },
2069
+ {
2070
+ "epoch": 3.92,
2071
+ "grad_norm": 0.051714606824807656,
2072
+ "learning_rate": 1.0931863906127327e-07,
2073
+ "loss": 0.0934,
2074
+ "step": 588
2075
+ },
2076
+ {
2077
+ "epoch": 3.9333333333333336,
2078
+ "grad_norm": 0.04613614120222887,
2079
+ "learning_rate": 7.59241783341913e-08,
2080
+ "loss": 0.0948,
2081
+ "step": 590
2082
+ },
2083
+ {
2084
+ "epoch": 3.9466666666666668,
2085
+ "grad_norm": 0.16351246299670308,
2086
+ "learning_rate": 4.859590276170556e-08,
2087
+ "loss": 0.0887,
2088
+ "step": 592
2089
+ },
2090
+ {
2091
+ "epoch": 3.96,
2092
+ "grad_norm": 0.04256032208605194,
2093
+ "learning_rate": 2.7337132953697554e-08,
2094
+ "loss": 0.0866,
2095
+ "step": 594
2096
+ },
2097
+ {
2098
+ "epoch": 3.9733333333333336,
2099
+ "grad_norm": 0.04791037317445386,
2100
+ "learning_rate": 1.215045202527243e-08,
2101
+ "loss": 0.0906,
2102
+ "step": 596
2103
+ },
2104
+ {
2105
+ "epoch": 3.986666666666667,
2106
+ "grad_norm": 0.04423655674990359,
2107
+ "learning_rate": 3.0377052828489683e-09,
2108
+ "loss": 0.0832,
2109
+ "step": 598
2110
+ },
2111
+ {
2112
+ "epoch": 4.0,
2113
+ "grad_norm": 0.0445911005271618,
2114
+ "learning_rate": 0.0,
2115
+ "loss": 0.0851,
2116
+ "step": 600
2117
+ }
2118
+ ],
2119
+ "logging_steps": 2,
2120
+ "max_steps": 600,
2121
+ "num_input_tokens_seen": 0,
2122
+ "num_train_epochs": 4,
2123
+ "save_steps": 500,
2124
+ "stateful_callbacks": {
2125
+ "TrainerControl": {
2126
+ "args": {
2127
+ "should_epoch_stop": false,
2128
+ "should_evaluate": false,
2129
+ "should_log": false,
2130
+ "should_save": true,
2131
+ "should_training_stop": true
2132
+ },
2133
+ "attributes": {}
2134
+ }
2135
+ },
2136
+ "total_flos": 2.4291042241019904e+19,
2137
+ "train_batch_size": 2,
2138
+ "trial_name": null,
2139
+ "trial_params": null
2140
+ }
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a16e64d1c6021a3fcf756d3a684b46c5373f16f0e5f84b7b702a5b8705320d43
3
+ size 7800
uccix_v2_instruct_191224_no_parallel_mixture_lr1e-4/checkpoint-600/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)