tktung commited on
Commit
b87beb1
·
verified ·
1 Parent(s): 1ecf88d

Upload folder using huggingface_hub

Browse files
Files changed (26) hide show
  1. uccix_instruct_191224_lr1e-5/checkpoint-780/config.json +30 -0
  2. uccix_instruct_191224_lr1e-5/checkpoint-780/generation_config.json +10 -0
  3. uccix_instruct_191224_lr1e-5/checkpoint-780/latest +1 -0
  4. uccix_instruct_191224_lr1e-5/checkpoint-780/model-00001-of-00006.safetensors +3 -0
  5. uccix_instruct_191224_lr1e-5/checkpoint-780/model-00002-of-00006.safetensors +3 -0
  6. uccix_instruct_191224_lr1e-5/checkpoint-780/model-00003-of-00006.safetensors +3 -0
  7. uccix_instruct_191224_lr1e-5/checkpoint-780/model-00004-of-00006.safetensors +3 -0
  8. uccix_instruct_191224_lr1e-5/checkpoint-780/model-00005-of-00006.safetensors +3 -0
  9. uccix_instruct_191224_lr1e-5/checkpoint-780/model-00006-of-00006.safetensors +3 -0
  10. uccix_instruct_191224_lr1e-5/checkpoint-780/model.safetensors.index.json +370 -0
  11. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_0.pth +3 -0
  12. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_1.pth +3 -0
  13. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_2.pth +3 -0
  14. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_3.pth +3 -0
  15. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_4.pth +3 -0
  16. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_5.pth +3 -0
  17. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_6.pth +3 -0
  18. uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_7.pth +3 -0
  19. uccix_instruct_191224_lr1e-5/checkpoint-780/scheduler.pt +3 -0
  20. uccix_instruct_191224_lr1e-5/checkpoint-780/special_tokens_map.json +24 -0
  21. uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.json +0 -0
  22. uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.model +3 -0
  23. uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer_config.json +43 -0
  24. uccix_instruct_191224_lr1e-5/checkpoint-780/trainer_state.json +2770 -0
  25. uccix_instruct_191224_lr1e-5/checkpoint-780/training_args.bin +3 -0
  26. uccix_instruct_191224_lr1e-5/checkpoint-780/zero_to_fp32.py +592 -0
uccix_instruct_191224_lr1e-5/checkpoint-780/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ReliableAI/UCCIX-Llama2-13B",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
uccix_instruct_191224_lr1e-5/checkpoint-780/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
uccix_instruct_191224_lr1e-5/checkpoint-780/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step780
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94965cf498cb0f139ec3e2dba2a39a5783dcb09b7e8c3f92a268db18c7a5e70f
3
+ size 4961502800
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dae0127fe777d3dda1e7b996bf7a8f989ef5e1341813449c1bc17a1731b5218
3
+ size 4970422232
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ff6d509711cc88ba6760fcde5f2356ec328e340d069ccf53a8f2c3912de3091
3
+ size 4881272584
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88177016a275975476dccde391c6e4c6a40fc135b40b7c3be507f3765b0b7005
3
+ size 4933722216
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5c1c2740a0eb1dbdf876fd161dbe9a49f9d7eee88898792421b3b5abbb9cedc
3
+ size 4933722208
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58734ae52c39ae93621ff4ad05a156ab41c86a6ce2d8bed2b9d6a1200110e27e
3
+ size 1422460712
uccix_instruct_191224_lr1e-5/checkpoint-780/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00dfeb21ba336403a7e72c8f77c9778a257aad0edee2feae2d340cf03caca787
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50465e9d75c92e96fd7519f629c79aead5d2cc9b6088eee8fa9736b132e587d6
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cf4c7fbb993fef05bd7f7fb8a7f87bad0c0e0da1bbeb38e720877b83d2e86b4
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fdab190afc0f03dae6afda58a9cbb58b2316be270b8410333bd454c4545a72e
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:011bd910deb7f0f8d5392fefc20e75941dfb3224ef0ddddf1618e98d9f28760d
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab705de1b950b842a5f0ddeed8c2e279a4e5f557eaa09d848925c1c5af78a2cf
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03e7ca626152124bd7340d340c0be0769a6a733a8a52b8861de45b114fdb043a
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77b33bae6d2188390ebc6dfdd276a1f09b13f49680aa59e33f8ab221e3b919bd
3
+ size 15984
uccix_instruct_191224_lr1e-5/checkpoint-780/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46f217040728795cee3845514c2663ea7abe3dcb3034ff5b61525c8b41f46289
3
+ size 1064
uccix_instruct_191224_lr1e-5/checkpoint-780/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
3
+ size 558602
uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
uccix_instruct_191224_lr1e-5/checkpoint-780/trainer_state.json ADDED
@@ -0,0 +1,2770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 780,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.00641025641025641,
13
+ "grad_norm": 3.8148568052575884,
14
+ "learning_rate": 1.282051282051282e-07,
15
+ "loss": 4.889,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01282051282051282,
20
+ "grad_norm": 4.453444589892027,
21
+ "learning_rate": 2.564102564102564e-07,
22
+ "loss": 4.9097,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.02564102564102564,
27
+ "grad_norm": 4.896614258621833,
28
+ "learning_rate": 5.128205128205128e-07,
29
+ "loss": 4.9099,
30
+ "step": 4
31
+ },
32
+ {
33
+ "epoch": 0.038461538461538464,
34
+ "grad_norm": 4.456576485464451,
35
+ "learning_rate": 7.692307692307694e-07,
36
+ "loss": 4.9102,
37
+ "step": 6
38
+ },
39
+ {
40
+ "epoch": 0.05128205128205128,
41
+ "grad_norm": 4.193427815120892,
42
+ "learning_rate": 1.0256410256410257e-06,
43
+ "loss": 4.8924,
44
+ "step": 8
45
+ },
46
+ {
47
+ "epoch": 0.0641025641025641,
48
+ "grad_norm": 3.6726747534666555,
49
+ "learning_rate": 1.282051282051282e-06,
50
+ "loss": 4.8372,
51
+ "step": 10
52
+ },
53
+ {
54
+ "epoch": 0.07692307692307693,
55
+ "grad_norm": 3.337981680961211,
56
+ "learning_rate": 1.5384615384615387e-06,
57
+ "loss": 4.7794,
58
+ "step": 12
59
+ },
60
+ {
61
+ "epoch": 0.08974358974358974,
62
+ "grad_norm": 2.675890453922504,
63
+ "learning_rate": 1.794871794871795e-06,
64
+ "loss": 4.6191,
65
+ "step": 14
66
+ },
67
+ {
68
+ "epoch": 0.10256410256410256,
69
+ "grad_norm": 2.398848700299253,
70
+ "learning_rate": 2.0512820512820513e-06,
71
+ "loss": 4.5723,
72
+ "step": 16
73
+ },
74
+ {
75
+ "epoch": 0.11538461538461539,
76
+ "grad_norm": 1.8159784961859098,
77
+ "learning_rate": 2.307692307692308e-06,
78
+ "loss": 4.3568,
79
+ "step": 18
80
+ },
81
+ {
82
+ "epoch": 0.1282051282051282,
83
+ "grad_norm": 1.6094220673057946,
84
+ "learning_rate": 2.564102564102564e-06,
85
+ "loss": 4.2686,
86
+ "step": 20
87
+ },
88
+ {
89
+ "epoch": 0.14102564102564102,
90
+ "grad_norm": 1.4349818434671497,
91
+ "learning_rate": 2.8205128205128207e-06,
92
+ "loss": 4.169,
93
+ "step": 22
94
+ },
95
+ {
96
+ "epoch": 0.15384615384615385,
97
+ "grad_norm": 1.4412559958198408,
98
+ "learning_rate": 3.0769230769230774e-06,
99
+ "loss": 4.0415,
100
+ "step": 24
101
+ },
102
+ {
103
+ "epoch": 0.16666666666666666,
104
+ "grad_norm": 1.3626982007755366,
105
+ "learning_rate": 3.3333333333333333e-06,
106
+ "loss": 3.8569,
107
+ "step": 26
108
+ },
109
+ {
110
+ "epoch": 0.1794871794871795,
111
+ "grad_norm": 1.3679096739652512,
112
+ "learning_rate": 3.58974358974359e-06,
113
+ "loss": 3.7409,
114
+ "step": 28
115
+ },
116
+ {
117
+ "epoch": 0.19230769230769232,
118
+ "grad_norm": 1.3396391976584703,
119
+ "learning_rate": 3.846153846153847e-06,
120
+ "loss": 3.6585,
121
+ "step": 30
122
+ },
123
+ {
124
+ "epoch": 0.20512820512820512,
125
+ "grad_norm": 1.294876480457606,
126
+ "learning_rate": 4.102564102564103e-06,
127
+ "loss": 3.4961,
128
+ "step": 32
129
+ },
130
+ {
131
+ "epoch": 0.21794871794871795,
132
+ "grad_norm": 1.103820056614455,
133
+ "learning_rate": 4.358974358974359e-06,
134
+ "loss": 3.3518,
135
+ "step": 34
136
+ },
137
+ {
138
+ "epoch": 0.23076923076923078,
139
+ "grad_norm": 1.0522131115906572,
140
+ "learning_rate": 4.615384615384616e-06,
141
+ "loss": 3.1984,
142
+ "step": 36
143
+ },
144
+ {
145
+ "epoch": 0.24358974358974358,
146
+ "grad_norm": 1.0081732884085817,
147
+ "learning_rate": 4.871794871794872e-06,
148
+ "loss": 3.054,
149
+ "step": 38
150
+ },
151
+ {
152
+ "epoch": 0.2564102564102564,
153
+ "grad_norm": 0.9214039999549644,
154
+ "learning_rate": 5.128205128205128e-06,
155
+ "loss": 2.8628,
156
+ "step": 40
157
+ },
158
+ {
159
+ "epoch": 0.2692307692307692,
160
+ "grad_norm": 0.8143994876297143,
161
+ "learning_rate": 5.384615384615385e-06,
162
+ "loss": 2.7475,
163
+ "step": 42
164
+ },
165
+ {
166
+ "epoch": 0.28205128205128205,
167
+ "grad_norm": 0.700891765547207,
168
+ "learning_rate": 5.641025641025641e-06,
169
+ "loss": 2.5869,
170
+ "step": 44
171
+ },
172
+ {
173
+ "epoch": 0.2948717948717949,
174
+ "grad_norm": 0.7510674065754775,
175
+ "learning_rate": 5.897435897435898e-06,
176
+ "loss": 2.4461,
177
+ "step": 46
178
+ },
179
+ {
180
+ "epoch": 0.3076923076923077,
181
+ "grad_norm": 0.6794074940373539,
182
+ "learning_rate": 6.153846153846155e-06,
183
+ "loss": 2.3477,
184
+ "step": 48
185
+ },
186
+ {
187
+ "epoch": 0.32051282051282054,
188
+ "grad_norm": 0.5162215042692575,
189
+ "learning_rate": 6.410256410256412e-06,
190
+ "loss": 2.2152,
191
+ "step": 50
192
+ },
193
+ {
194
+ "epoch": 0.3333333333333333,
195
+ "grad_norm": 0.5146975027904754,
196
+ "learning_rate": 6.666666666666667e-06,
197
+ "loss": 2.1975,
198
+ "step": 52
199
+ },
200
+ {
201
+ "epoch": 0.34615384615384615,
202
+ "grad_norm": 0.4474574545979082,
203
+ "learning_rate": 6.923076923076923e-06,
204
+ "loss": 2.0824,
205
+ "step": 54
206
+ },
207
+ {
208
+ "epoch": 0.358974358974359,
209
+ "grad_norm": 0.40379510918119965,
210
+ "learning_rate": 7.17948717948718e-06,
211
+ "loss": 2.0388,
212
+ "step": 56
213
+ },
214
+ {
215
+ "epoch": 0.3717948717948718,
216
+ "grad_norm": 0.4109144194248555,
217
+ "learning_rate": 7.435897435897437e-06,
218
+ "loss": 1.9699,
219
+ "step": 58
220
+ },
221
+ {
222
+ "epoch": 0.38461538461538464,
223
+ "grad_norm": 0.36878556755849573,
224
+ "learning_rate": 7.692307692307694e-06,
225
+ "loss": 1.9252,
226
+ "step": 60
227
+ },
228
+ {
229
+ "epoch": 0.3974358974358974,
230
+ "grad_norm": 0.33951214974325605,
231
+ "learning_rate": 7.948717948717949e-06,
232
+ "loss": 1.8773,
233
+ "step": 62
234
+ },
235
+ {
236
+ "epoch": 0.41025641025641024,
237
+ "grad_norm": 0.31625266306424027,
238
+ "learning_rate": 8.205128205128205e-06,
239
+ "loss": 1.7966,
240
+ "step": 64
241
+ },
242
+ {
243
+ "epoch": 0.4230769230769231,
244
+ "grad_norm": 0.7180890498799148,
245
+ "learning_rate": 8.461538461538462e-06,
246
+ "loss": 1.8108,
247
+ "step": 66
248
+ },
249
+ {
250
+ "epoch": 0.4358974358974359,
251
+ "grad_norm": 0.33704662479371716,
252
+ "learning_rate": 8.717948717948719e-06,
253
+ "loss": 1.7498,
254
+ "step": 68
255
+ },
256
+ {
257
+ "epoch": 0.44871794871794873,
258
+ "grad_norm": 0.2761824271642518,
259
+ "learning_rate": 8.974358974358976e-06,
260
+ "loss": 1.7124,
261
+ "step": 70
262
+ },
263
+ {
264
+ "epoch": 0.46153846153846156,
265
+ "grad_norm": 0.24386286193528572,
266
+ "learning_rate": 9.230769230769232e-06,
267
+ "loss": 1.6382,
268
+ "step": 72
269
+ },
270
+ {
271
+ "epoch": 0.47435897435897434,
272
+ "grad_norm": 0.25885451676676363,
273
+ "learning_rate": 9.487179487179487e-06,
274
+ "loss": 1.6588,
275
+ "step": 74
276
+ },
277
+ {
278
+ "epoch": 0.48717948717948717,
279
+ "grad_norm": 0.3040030663690383,
280
+ "learning_rate": 9.743589743589744e-06,
281
+ "loss": 1.6209,
282
+ "step": 76
283
+ },
284
+ {
285
+ "epoch": 0.5,
286
+ "grad_norm": 0.26598080566137733,
287
+ "learning_rate": 1e-05,
288
+ "loss": 1.6294,
289
+ "step": 78
290
+ },
291
+ {
292
+ "epoch": 0.5128205128205128,
293
+ "grad_norm": 0.22696288673824674,
294
+ "learning_rate": 9.99995506314361e-06,
295
+ "loss": 1.58,
296
+ "step": 80
297
+ },
298
+ {
299
+ "epoch": 0.5256410256410257,
300
+ "grad_norm": 0.21242259411358655,
301
+ "learning_rate": 9.99982025338217e-06,
302
+ "loss": 1.5439,
303
+ "step": 82
304
+ },
305
+ {
306
+ "epoch": 0.5384615384615384,
307
+ "grad_norm": 0.20291826899403465,
308
+ "learning_rate": 9.999595573138845e-06,
309
+ "loss": 1.5274,
310
+ "step": 84
311
+ },
312
+ {
313
+ "epoch": 0.5512820512820513,
314
+ "grad_norm": 0.1855444412322797,
315
+ "learning_rate": 9.99928102645221e-06,
316
+ "loss": 1.5161,
317
+ "step": 86
318
+ },
319
+ {
320
+ "epoch": 0.5641025641025641,
321
+ "grad_norm": 0.17883874148398324,
322
+ "learning_rate": 9.99887661897616e-06,
323
+ "loss": 1.4916,
324
+ "step": 88
325
+ },
326
+ {
327
+ "epoch": 0.5769230769230769,
328
+ "grad_norm": 0.17041478792908024,
329
+ "learning_rate": 9.99838235797981e-06,
330
+ "loss": 1.4679,
331
+ "step": 90
332
+ },
333
+ {
334
+ "epoch": 0.5897435897435898,
335
+ "grad_norm": 0.1904762198987749,
336
+ "learning_rate": 9.997798252347382e-06,
337
+ "loss": 1.471,
338
+ "step": 92
339
+ },
340
+ {
341
+ "epoch": 0.6025641025641025,
342
+ "grad_norm": 0.19077041355708335,
343
+ "learning_rate": 9.99712431257802e-06,
344
+ "loss": 1.4672,
345
+ "step": 94
346
+ },
347
+ {
348
+ "epoch": 0.6153846153846154,
349
+ "grad_norm": 0.1702104328191874,
350
+ "learning_rate": 9.996360550785619e-06,
351
+ "loss": 1.4455,
352
+ "step": 96
353
+ },
354
+ {
355
+ "epoch": 0.6282051282051282,
356
+ "grad_norm": 0.19039133859515542,
357
+ "learning_rate": 9.9955069806986e-06,
358
+ "loss": 1.4727,
359
+ "step": 98
360
+ },
361
+ {
362
+ "epoch": 0.6410256410256411,
363
+ "grad_norm": 0.15448238517128507,
364
+ "learning_rate": 9.994563617659665e-06,
365
+ "loss": 1.4257,
366
+ "step": 100
367
+ },
368
+ {
369
+ "epoch": 0.6538461538461539,
370
+ "grad_norm": 0.15202351051018634,
371
+ "learning_rate": 9.993530478625524e-06,
372
+ "loss": 1.4214,
373
+ "step": 102
374
+ },
375
+ {
376
+ "epoch": 0.6666666666666666,
377
+ "grad_norm": 0.16296598133044526,
378
+ "learning_rate": 9.992407582166582e-06,
379
+ "loss": 1.4213,
380
+ "step": 104
381
+ },
382
+ {
383
+ "epoch": 0.6794871794871795,
384
+ "grad_norm": 0.1462038294164801,
385
+ "learning_rate": 9.991194948466615e-06,
386
+ "loss": 1.3993,
387
+ "step": 106
388
+ },
389
+ {
390
+ "epoch": 0.6923076923076923,
391
+ "grad_norm": 0.14470989191451086,
392
+ "learning_rate": 9.989892599322404e-06,
393
+ "loss": 1.4014,
394
+ "step": 108
395
+ },
396
+ {
397
+ "epoch": 0.7051282051282052,
398
+ "grad_norm": 0.15440545758233384,
399
+ "learning_rate": 9.988500558143337e-06,
400
+ "loss": 1.3878,
401
+ "step": 110
402
+ },
403
+ {
404
+ "epoch": 0.717948717948718,
405
+ "grad_norm": 0.1412948019214843,
406
+ "learning_rate": 9.987018849950996e-06,
407
+ "loss": 1.355,
408
+ "step": 112
409
+ },
410
+ {
411
+ "epoch": 0.7307692307692307,
412
+ "grad_norm": 0.15156074653795895,
413
+ "learning_rate": 9.985447501378706e-06,
414
+ "loss": 1.3642,
415
+ "step": 114
416
+ },
417
+ {
418
+ "epoch": 0.7435897435897436,
419
+ "grad_norm": 0.3875845143038168,
420
+ "learning_rate": 9.983786540671052e-06,
421
+ "loss": 1.3797,
422
+ "step": 116
423
+ },
424
+ {
425
+ "epoch": 0.7564102564102564,
426
+ "grad_norm": 0.15788537547887518,
427
+ "learning_rate": 9.982035997683372e-06,
428
+ "loss": 1.3388,
429
+ "step": 118
430
+ },
431
+ {
432
+ "epoch": 0.7692307692307693,
433
+ "grad_norm": 0.15056320914445512,
434
+ "learning_rate": 9.980195903881231e-06,
435
+ "loss": 1.343,
436
+ "step": 120
437
+ },
438
+ {
439
+ "epoch": 0.782051282051282,
440
+ "grad_norm": 0.1555129283317706,
441
+ "learning_rate": 9.978266292339838e-06,
442
+ "loss": 1.328,
443
+ "step": 122
444
+ },
445
+ {
446
+ "epoch": 0.7948717948717948,
447
+ "grad_norm": 0.14999182496915453,
448
+ "learning_rate": 9.976247197743465e-06,
449
+ "loss": 1.352,
450
+ "step": 124
451
+ },
452
+ {
453
+ "epoch": 0.8076923076923077,
454
+ "grad_norm": 0.14124313426191026,
455
+ "learning_rate": 9.974138656384815e-06,
456
+ "loss": 1.3243,
457
+ "step": 126
458
+ },
459
+ {
460
+ "epoch": 0.8205128205128205,
461
+ "grad_norm": 0.1378326204862212,
462
+ "learning_rate": 9.97194070616438e-06,
463
+ "loss": 1.3241,
464
+ "step": 128
465
+ },
466
+ {
467
+ "epoch": 0.8333333333333334,
468
+ "grad_norm": 0.14227960534974604,
469
+ "learning_rate": 9.969653386589749e-06,
470
+ "loss": 1.3219,
471
+ "step": 130
472
+ },
473
+ {
474
+ "epoch": 0.8461538461538461,
475
+ "grad_norm": 0.12713543749272155,
476
+ "learning_rate": 9.967276738774897e-06,
477
+ "loss": 1.3096,
478
+ "step": 132
479
+ },
480
+ {
481
+ "epoch": 0.8589743589743589,
482
+ "grad_norm": 0.15061232362563903,
483
+ "learning_rate": 9.964810805439464e-06,
484
+ "loss": 1.3011,
485
+ "step": 134
486
+ },
487
+ {
488
+ "epoch": 0.8717948717948718,
489
+ "grad_norm": 0.14361563348990292,
490
+ "learning_rate": 9.962255630907964e-06,
491
+ "loss": 1.2827,
492
+ "step": 136
493
+ },
494
+ {
495
+ "epoch": 0.8846153846153846,
496
+ "grad_norm": 0.17754387209035652,
497
+ "learning_rate": 9.959611261108999e-06,
498
+ "loss": 1.3185,
499
+ "step": 138
500
+ },
501
+ {
502
+ "epoch": 0.8974358974358975,
503
+ "grad_norm": 0.1458623897430443,
504
+ "learning_rate": 9.956877743574437e-06,
505
+ "loss": 1.3286,
506
+ "step": 140
507
+ },
508
+ {
509
+ "epoch": 0.9102564102564102,
510
+ "grad_norm": 0.14084398418567437,
511
+ "learning_rate": 9.954055127438554e-06,
512
+ "loss": 1.3005,
513
+ "step": 142
514
+ },
515
+ {
516
+ "epoch": 0.9230769230769231,
517
+ "grad_norm": 0.13580861113069753,
518
+ "learning_rate": 9.951143463437145e-06,
519
+ "loss": 1.3165,
520
+ "step": 144
521
+ },
522
+ {
523
+ "epoch": 0.9358974358974359,
524
+ "grad_norm": 0.13622051889734035,
525
+ "learning_rate": 9.948142803906623e-06,
526
+ "loss": 1.2929,
527
+ "step": 146
528
+ },
529
+ {
530
+ "epoch": 0.9487179487179487,
531
+ "grad_norm": 0.12679082371935066,
532
+ "learning_rate": 9.94505320278307e-06,
533
+ "loss": 1.2833,
534
+ "step": 148
535
+ },
536
+ {
537
+ "epoch": 0.9615384615384616,
538
+ "grad_norm": 0.11939382079952243,
539
+ "learning_rate": 9.94187471560127e-06,
540
+ "loss": 1.2851,
541
+ "step": 150
542
+ },
543
+ {
544
+ "epoch": 0.9743589743589743,
545
+ "grad_norm": 0.11752490134274678,
546
+ "learning_rate": 9.938607399493714e-06,
547
+ "loss": 1.2559,
548
+ "step": 152
549
+ },
550
+ {
551
+ "epoch": 0.9871794871794872,
552
+ "grad_norm": 0.11807212671773365,
553
+ "learning_rate": 9.935251313189564e-06,
554
+ "loss": 1.285,
555
+ "step": 154
556
+ },
557
+ {
558
+ "epoch": 1.0,
559
+ "grad_norm": 0.1120761333795772,
560
+ "learning_rate": 9.931806517013612e-06,
561
+ "loss": 1.2491,
562
+ "step": 156
563
+ },
564
+ {
565
+ "epoch": 1.0128205128205128,
566
+ "grad_norm": 0.10750345822189263,
567
+ "learning_rate": 9.92827307288518e-06,
568
+ "loss": 1.2442,
569
+ "step": 158
570
+ },
571
+ {
572
+ "epoch": 1.0256410256410255,
573
+ "grad_norm": 0.10918642022881683,
574
+ "learning_rate": 9.924651044317017e-06,
575
+ "loss": 1.2286,
576
+ "step": 160
577
+ },
578
+ {
579
+ "epoch": 1.0384615384615385,
580
+ "grad_norm": 0.11225330042691335,
581
+ "learning_rate": 9.920940496414153e-06,
582
+ "loss": 1.2158,
583
+ "step": 162
584
+ },
585
+ {
586
+ "epoch": 1.0512820512820513,
587
+ "grad_norm": 0.11366482652198566,
588
+ "learning_rate": 9.917141495872733e-06,
589
+ "loss": 1.2074,
590
+ "step": 164
591
+ },
592
+ {
593
+ "epoch": 1.064102564102564,
594
+ "grad_norm": 0.12295651003296312,
595
+ "learning_rate": 9.913254110978812e-06,
596
+ "loss": 1.2003,
597
+ "step": 166
598
+ },
599
+ {
600
+ "epoch": 1.0769230769230769,
601
+ "grad_norm": 0.1144456030840293,
602
+ "learning_rate": 9.909278411607134e-06,
603
+ "loss": 1.206,
604
+ "step": 168
605
+ },
606
+ {
607
+ "epoch": 1.0897435897435896,
608
+ "grad_norm": 0.2468334129961725,
609
+ "learning_rate": 9.90521446921987e-06,
610
+ "loss": 1.2235,
611
+ "step": 170
612
+ },
613
+ {
614
+ "epoch": 1.1025641025641026,
615
+ "grad_norm": 0.127278158070263,
616
+ "learning_rate": 9.90106235686534e-06,
617
+ "loss": 1.1928,
618
+ "step": 172
619
+ },
620
+ {
621
+ "epoch": 1.1153846153846154,
622
+ "grad_norm": 0.1280282060730887,
623
+ "learning_rate": 9.896822149176695e-06,
624
+ "loss": 1.2068,
625
+ "step": 174
626
+ },
627
+ {
628
+ "epoch": 1.1282051282051282,
629
+ "grad_norm": 0.1142922422404122,
630
+ "learning_rate": 9.892493922370575e-06,
631
+ "loss": 1.217,
632
+ "step": 176
633
+ },
634
+ {
635
+ "epoch": 1.141025641025641,
636
+ "grad_norm": 0.17470470224878323,
637
+ "learning_rate": 9.888077754245741e-06,
638
+ "loss": 1.2099,
639
+ "step": 178
640
+ },
641
+ {
642
+ "epoch": 1.1538461538461537,
643
+ "grad_norm": 0.10477882692325258,
644
+ "learning_rate": 9.883573724181683e-06,
645
+ "loss": 1.1944,
646
+ "step": 180
647
+ },
648
+ {
649
+ "epoch": 1.1666666666666667,
650
+ "grad_norm": 0.114790034377695,
651
+ "learning_rate": 9.878981913137178e-06,
652
+ "loss": 1.172,
653
+ "step": 182
654
+ },
655
+ {
656
+ "epoch": 1.1794871794871795,
657
+ "grad_norm": 0.1044922535107306,
658
+ "learning_rate": 9.87430240364885e-06,
659
+ "loss": 1.2147,
660
+ "step": 184
661
+ },
662
+ {
663
+ "epoch": 1.1923076923076923,
664
+ "grad_norm": 0.09771283060341285,
665
+ "learning_rate": 9.869535279829674e-06,
666
+ "loss": 1.173,
667
+ "step": 186
668
+ },
669
+ {
670
+ "epoch": 1.205128205128205,
671
+ "grad_norm": 0.1013995999635824,
672
+ "learning_rate": 9.864680627367476e-06,
673
+ "loss": 1.2023,
674
+ "step": 188
675
+ },
676
+ {
677
+ "epoch": 1.217948717948718,
678
+ "grad_norm": 0.10273326452887067,
679
+ "learning_rate": 9.859738533523384e-06,
680
+ "loss": 1.1732,
681
+ "step": 190
682
+ },
683
+ {
684
+ "epoch": 1.2307692307692308,
685
+ "grad_norm": 0.09684048616936082,
686
+ "learning_rate": 9.854709087130261e-06,
687
+ "loss": 1.1952,
688
+ "step": 192
689
+ },
690
+ {
691
+ "epoch": 1.2435897435897436,
692
+ "grad_norm": 0.10827760658070901,
693
+ "learning_rate": 9.849592378591113e-06,
694
+ "loss": 1.1864,
695
+ "step": 194
696
+ },
697
+ {
698
+ "epoch": 1.2564102564102564,
699
+ "grad_norm": 0.09989527940011267,
700
+ "learning_rate": 9.844388499877457e-06,
701
+ "loss": 1.2016,
702
+ "step": 196
703
+ },
704
+ {
705
+ "epoch": 1.2692307692307692,
706
+ "grad_norm": 0.09930771667309381,
707
+ "learning_rate": 9.839097544527674e-06,
708
+ "loss": 1.1738,
709
+ "step": 198
710
+ },
711
+ {
712
+ "epoch": 1.282051282051282,
713
+ "grad_norm": 0.1032001919164007,
714
+ "learning_rate": 9.833719607645325e-06,
715
+ "loss": 1.176,
716
+ "step": 200
717
+ },
718
+ {
719
+ "epoch": 1.294871794871795,
720
+ "grad_norm": 0.09859412157061716,
721
+ "learning_rate": 9.82825478589744e-06,
722
+ "loss": 1.1682,
723
+ "step": 202
724
+ },
725
+ {
726
+ "epoch": 1.3076923076923077,
727
+ "grad_norm": 0.09558235334437347,
728
+ "learning_rate": 9.822703177512783e-06,
729
+ "loss": 1.181,
730
+ "step": 204
731
+ },
732
+ {
733
+ "epoch": 1.3205128205128205,
734
+ "grad_norm": 0.08733478657745303,
735
+ "learning_rate": 9.817064882280085e-06,
736
+ "loss": 1.1686,
737
+ "step": 206
738
+ },
739
+ {
740
+ "epoch": 1.3333333333333333,
741
+ "grad_norm": 0.09397505343456257,
742
+ "learning_rate": 9.811340001546252e-06,
743
+ "loss": 1.1778,
744
+ "step": 208
745
+ },
746
+ {
747
+ "epoch": 1.3461538461538463,
748
+ "grad_norm": 0.09590407825516856,
749
+ "learning_rate": 9.805528638214543e-06,
750
+ "loss": 1.1542,
751
+ "step": 210
752
+ },
753
+ {
754
+ "epoch": 1.358974358974359,
755
+ "grad_norm": 0.0912508440064145,
756
+ "learning_rate": 9.799630896742716e-06,
757
+ "loss": 1.1643,
758
+ "step": 212
759
+ },
760
+ {
761
+ "epoch": 1.3717948717948718,
762
+ "grad_norm": 0.09258955107744923,
763
+ "learning_rate": 9.793646883141155e-06,
764
+ "loss": 1.1686,
765
+ "step": 214
766
+ },
767
+ {
768
+ "epoch": 1.3846153846153846,
769
+ "grad_norm": 0.09889457149777804,
770
+ "learning_rate": 9.787576704970965e-06,
771
+ "loss": 1.1677,
772
+ "step": 216
773
+ },
774
+ {
775
+ "epoch": 1.3974358974358974,
776
+ "grad_norm": 0.09374670756166416,
777
+ "learning_rate": 9.781420471342035e-06,
778
+ "loss": 1.146,
779
+ "step": 218
780
+ },
781
+ {
782
+ "epoch": 1.4102564102564101,
783
+ "grad_norm": 0.09136677460744856,
784
+ "learning_rate": 9.77517829291108e-06,
785
+ "loss": 1.1594,
786
+ "step": 220
787
+ },
788
+ {
789
+ "epoch": 1.4230769230769231,
790
+ "grad_norm": 0.10584946030378292,
791
+ "learning_rate": 9.768850281879651e-06,
792
+ "loss": 1.1865,
793
+ "step": 222
794
+ },
795
+ {
796
+ "epoch": 1.435897435897436,
797
+ "grad_norm": 0.09187981607301214,
798
+ "learning_rate": 9.762436551992117e-06,
799
+ "loss": 1.1606,
800
+ "step": 224
801
+ },
802
+ {
803
+ "epoch": 1.4487179487179487,
804
+ "grad_norm": 0.09880449655805854,
805
+ "learning_rate": 9.755937218533622e-06,
806
+ "loss": 1.1586,
807
+ "step": 226
808
+ },
809
+ {
810
+ "epoch": 1.4615384615384617,
811
+ "grad_norm": 0.08704607108972029,
812
+ "learning_rate": 9.74935239832801e-06,
813
+ "loss": 1.1746,
814
+ "step": 228
815
+ },
816
+ {
817
+ "epoch": 1.4743589743589745,
818
+ "grad_norm": 0.08909112778091671,
819
+ "learning_rate": 9.742682209735727e-06,
820
+ "loss": 1.1575,
821
+ "step": 230
822
+ },
823
+ {
824
+ "epoch": 1.4871794871794872,
825
+ "grad_norm": 0.09035998053799675,
826
+ "learning_rate": 9.735926772651703e-06,
827
+ "loss": 1.1678,
828
+ "step": 232
829
+ },
830
+ {
831
+ "epoch": 1.5,
832
+ "grad_norm": 0.09500864788295198,
833
+ "learning_rate": 9.729086208503174e-06,
834
+ "loss": 1.1466,
835
+ "step": 234
836
+ },
837
+ {
838
+ "epoch": 1.5128205128205128,
839
+ "grad_norm": 0.09247434213683463,
840
+ "learning_rate": 9.722160640247523e-06,
841
+ "loss": 1.1687,
842
+ "step": 236
843
+ },
844
+ {
845
+ "epoch": 1.5256410256410255,
846
+ "grad_norm": 0.09322212100100113,
847
+ "learning_rate": 9.715150192370054e-06,
848
+ "loss": 1.1376,
849
+ "step": 238
850
+ },
851
+ {
852
+ "epoch": 1.5384615384615383,
853
+ "grad_norm": 0.08824919508271642,
854
+ "learning_rate": 9.708054990881763e-06,
855
+ "loss": 1.1523,
856
+ "step": 240
857
+ },
858
+ {
859
+ "epoch": 1.5512820512820513,
860
+ "grad_norm": 0.25559730635424294,
861
+ "learning_rate": 9.700875163317072e-06,
862
+ "loss": 1.1488,
863
+ "step": 242
864
+ },
865
+ {
866
+ "epoch": 1.564102564102564,
867
+ "grad_norm": 0.2487505162861363,
868
+ "learning_rate": 9.693610838731532e-06,
869
+ "loss": 1.1481,
870
+ "step": 244
871
+ },
872
+ {
873
+ "epoch": 1.5769230769230769,
874
+ "grad_norm": 0.12151469789600829,
875
+ "learning_rate": 9.686262147699507e-06,
876
+ "loss": 1.1483,
877
+ "step": 246
878
+ },
879
+ {
880
+ "epoch": 1.5897435897435899,
881
+ "grad_norm": 0.10407519891252137,
882
+ "learning_rate": 9.678829222311827e-06,
883
+ "loss": 1.13,
884
+ "step": 248
885
+ },
886
+ {
887
+ "epoch": 1.6025641025641026,
888
+ "grad_norm": 0.11236395690738615,
889
+ "learning_rate": 9.671312196173413e-06,
890
+ "loss": 1.1493,
891
+ "step": 250
892
+ },
893
+ {
894
+ "epoch": 1.6153846153846154,
895
+ "grad_norm": 0.1012523372817843,
896
+ "learning_rate": 9.663711204400872e-06,
897
+ "loss": 1.148,
898
+ "step": 252
899
+ },
900
+ {
901
+ "epoch": 1.6282051282051282,
902
+ "grad_norm": 0.09652583778417714,
903
+ "learning_rate": 9.656026383620076e-06,
904
+ "loss": 1.1074,
905
+ "step": 254
906
+ },
907
+ {
908
+ "epoch": 1.641025641025641,
909
+ "grad_norm": 0.09448533541138639,
910
+ "learning_rate": 9.6482578719637e-06,
911
+ "loss": 1.1486,
912
+ "step": 256
913
+ },
914
+ {
915
+ "epoch": 1.6538461538461537,
916
+ "grad_norm": 0.09453430664055591,
917
+ "learning_rate": 9.640405809068743e-06,
918
+ "loss": 1.1197,
919
+ "step": 258
920
+ },
921
+ {
922
+ "epoch": 1.6666666666666665,
923
+ "grad_norm": 0.0952812616531032,
924
+ "learning_rate": 9.632470336074009e-06,
925
+ "loss": 1.1337,
926
+ "step": 260
927
+ },
928
+ {
929
+ "epoch": 1.6794871794871795,
930
+ "grad_norm": 0.09048018082770859,
931
+ "learning_rate": 9.624451595617588e-06,
932
+ "loss": 1.0885,
933
+ "step": 262
934
+ },
935
+ {
936
+ "epoch": 1.6923076923076923,
937
+ "grad_norm": 0.0922717302732401,
938
+ "learning_rate": 9.616349731834271e-06,
939
+ "loss": 1.1294,
940
+ "step": 264
941
+ },
942
+ {
943
+ "epoch": 1.7051282051282053,
944
+ "grad_norm": 0.09113342238000427,
945
+ "learning_rate": 9.608164890352977e-06,
946
+ "loss": 1.0871,
947
+ "step": 266
948
+ },
949
+ {
950
+ "epoch": 1.717948717948718,
951
+ "grad_norm": 0.10188653395954697,
952
+ "learning_rate": 9.599897218294122e-06,
953
+ "loss": 1.1237,
954
+ "step": 268
955
+ },
956
+ {
957
+ "epoch": 1.7307692307692308,
958
+ "grad_norm": 0.08946291041522332,
959
+ "learning_rate": 9.591546864266983e-06,
960
+ "loss": 1.1129,
961
+ "step": 270
962
+ },
963
+ {
964
+ "epoch": 1.7435897435897436,
965
+ "grad_norm": 0.092702242157672,
966
+ "learning_rate": 9.583113978367026e-06,
967
+ "loss": 1.1089,
968
+ "step": 272
969
+ },
970
+ {
971
+ "epoch": 1.7564102564102564,
972
+ "grad_norm": 0.1140491779513373,
973
+ "learning_rate": 9.574598712173202e-06,
974
+ "loss": 1.1286,
975
+ "step": 274
976
+ },
977
+ {
978
+ "epoch": 1.7692307692307692,
979
+ "grad_norm": 0.09516237353719291,
980
+ "learning_rate": 9.56600121874523e-06,
981
+ "loss": 1.1122,
982
+ "step": 276
983
+ },
984
+ {
985
+ "epoch": 1.782051282051282,
986
+ "grad_norm": 0.08916708413619781,
987
+ "learning_rate": 9.557321652620839e-06,
988
+ "loss": 1.1048,
989
+ "step": 278
990
+ },
991
+ {
992
+ "epoch": 1.7948717948717947,
993
+ "grad_norm": 0.09140805156925046,
994
+ "learning_rate": 9.548560169812997e-06,
995
+ "loss": 1.1058,
996
+ "step": 280
997
+ },
998
+ {
999
+ "epoch": 1.8076923076923077,
1000
+ "grad_norm": 0.08683635001330178,
1001
+ "learning_rate": 9.539716927807102e-06,
1002
+ "loss": 1.0925,
1003
+ "step": 282
1004
+ },
1005
+ {
1006
+ "epoch": 1.8205128205128205,
1007
+ "grad_norm": 0.09284148179598711,
1008
+ "learning_rate": 9.530792085558151e-06,
1009
+ "loss": 1.0948,
1010
+ "step": 284
1011
+ },
1012
+ {
1013
+ "epoch": 1.8333333333333335,
1014
+ "grad_norm": 0.08800610945553744,
1015
+ "learning_rate": 9.521785803487888e-06,
1016
+ "loss": 1.1116,
1017
+ "step": 286
1018
+ },
1019
+ {
1020
+ "epoch": 1.8461538461538463,
1021
+ "grad_norm": 0.08758546749473674,
1022
+ "learning_rate": 9.512698243481914e-06,
1023
+ "loss": 1.1059,
1024
+ "step": 288
1025
+ },
1026
+ {
1027
+ "epoch": 1.858974358974359,
1028
+ "grad_norm": 0.08336608124209365,
1029
+ "learning_rate": 9.50352956888678e-06,
1030
+ "loss": 1.1015,
1031
+ "step": 290
1032
+ },
1033
+ {
1034
+ "epoch": 1.8717948717948718,
1035
+ "grad_norm": 0.09199580396288136,
1036
+ "learning_rate": 9.49427994450705e-06,
1037
+ "loss": 1.0828,
1038
+ "step": 292
1039
+ },
1040
+ {
1041
+ "epoch": 1.8846153846153846,
1042
+ "grad_norm": 0.5410940704298627,
1043
+ "learning_rate": 9.484949536602343e-06,
1044
+ "loss": 1.1412,
1045
+ "step": 294
1046
+ },
1047
+ {
1048
+ "epoch": 1.8974358974358974,
1049
+ "grad_norm": 0.08913430120295451,
1050
+ "learning_rate": 9.47553851288434e-06,
1051
+ "loss": 1.1073,
1052
+ "step": 296
1053
+ },
1054
+ {
1055
+ "epoch": 1.9102564102564101,
1056
+ "grad_norm": 0.09420167495815907,
1057
+ "learning_rate": 9.466047042513767e-06,
1058
+ "loss": 1.0957,
1059
+ "step": 298
1060
+ },
1061
+ {
1062
+ "epoch": 1.9230769230769231,
1063
+ "grad_norm": 0.08189970955203785,
1064
+ "learning_rate": 9.45647529609736e-06,
1065
+ "loss": 1.0909,
1066
+ "step": 300
1067
+ },
1068
+ {
1069
+ "epoch": 1.935897435897436,
1070
+ "grad_norm": 0.09065809775757692,
1071
+ "learning_rate": 9.4468234456848e-06,
1072
+ "loss": 1.0896,
1073
+ "step": 302
1074
+ },
1075
+ {
1076
+ "epoch": 1.9487179487179487,
1077
+ "grad_norm": 0.08763498764491487,
1078
+ "learning_rate": 9.437091664765611e-06,
1079
+ "loss": 1.1099,
1080
+ "step": 304
1081
+ },
1082
+ {
1083
+ "epoch": 1.9615384615384617,
1084
+ "grad_norm": 0.09257403574026254,
1085
+ "learning_rate": 9.427280128266049e-06,
1086
+ "loss": 1.1236,
1087
+ "step": 306
1088
+ },
1089
+ {
1090
+ "epoch": 1.9743589743589745,
1091
+ "grad_norm": 0.08983923370086075,
1092
+ "learning_rate": 9.41738901254596e-06,
1093
+ "loss": 1.0909,
1094
+ "step": 308
1095
+ },
1096
+ {
1097
+ "epoch": 1.9871794871794872,
1098
+ "grad_norm": 0.086289850522152,
1099
+ "learning_rate": 9.4074184953956e-06,
1100
+ "loss": 1.0942,
1101
+ "step": 310
1102
+ },
1103
+ {
1104
+ "epoch": 2.0,
1105
+ "grad_norm": 0.0874296283040965,
1106
+ "learning_rate": 9.397368756032445e-06,
1107
+ "loss": 1.0651,
1108
+ "step": 312
1109
+ },
1110
+ {
1111
+ "epoch": 2.0128205128205128,
1112
+ "grad_norm": 0.0848953888966574,
1113
+ "learning_rate": 9.38723997509798e-06,
1114
+ "loss": 1.0569,
1115
+ "step": 314
1116
+ },
1117
+ {
1118
+ "epoch": 2.0256410256410255,
1119
+ "grad_norm": 0.08790616172980993,
1120
+ "learning_rate": 9.37703233465443e-06,
1121
+ "loss": 1.035,
1122
+ "step": 316
1123
+ },
1124
+ {
1125
+ "epoch": 2.0384615384615383,
1126
+ "grad_norm": 0.08376355574572536,
1127
+ "learning_rate": 9.366746018181503e-06,
1128
+ "loss": 1.0379,
1129
+ "step": 318
1130
+ },
1131
+ {
1132
+ "epoch": 2.051282051282051,
1133
+ "grad_norm": 0.7353839032057593,
1134
+ "learning_rate": 9.356381210573092e-06,
1135
+ "loss": 1.0623,
1136
+ "step": 320
1137
+ },
1138
+ {
1139
+ "epoch": 2.064102564102564,
1140
+ "grad_norm": 0.09158722362975955,
1141
+ "learning_rate": 9.345938098133946e-06,
1142
+ "loss": 1.0264,
1143
+ "step": 322
1144
+ },
1145
+ {
1146
+ "epoch": 2.076923076923077,
1147
+ "grad_norm": 0.08819422670959466,
1148
+ "learning_rate": 9.33541686857632e-06,
1149
+ "loss": 1.0456,
1150
+ "step": 324
1151
+ },
1152
+ {
1153
+ "epoch": 2.08974358974359,
1154
+ "grad_norm": 0.0905819981621342,
1155
+ "learning_rate": 9.324817711016609e-06,
1156
+ "loss": 1.0239,
1157
+ "step": 326
1158
+ },
1159
+ {
1160
+ "epoch": 2.1025641025641026,
1161
+ "grad_norm": 0.08799589635983858,
1162
+ "learning_rate": 9.31414081597194e-06,
1163
+ "loss": 1.0498,
1164
+ "step": 328
1165
+ },
1166
+ {
1167
+ "epoch": 2.1153846153846154,
1168
+ "grad_norm": 0.0847927160084877,
1169
+ "learning_rate": 9.303386375356752e-06,
1170
+ "loss": 1.0163,
1171
+ "step": 330
1172
+ },
1173
+ {
1174
+ "epoch": 2.128205128205128,
1175
+ "grad_norm": 0.09169187613815971,
1176
+ "learning_rate": 9.292554582479349e-06,
1177
+ "loss": 1.0054,
1178
+ "step": 332
1179
+ },
1180
+ {
1181
+ "epoch": 2.141025641025641,
1182
+ "grad_norm": 0.08905293788047657,
1183
+ "learning_rate": 9.281645632038417e-06,
1184
+ "loss": 1.062,
1185
+ "step": 334
1186
+ },
1187
+ {
1188
+ "epoch": 2.1538461538461537,
1189
+ "grad_norm": 0.09229173633666073,
1190
+ "learning_rate": 9.270659720119533e-06,
1191
+ "loss": 1.039,
1192
+ "step": 336
1193
+ },
1194
+ {
1195
+ "epoch": 2.1666666666666665,
1196
+ "grad_norm": 0.08430144514732368,
1197
+ "learning_rate": 9.259597044191635e-06,
1198
+ "loss": 1.0268,
1199
+ "step": 338
1200
+ },
1201
+ {
1202
+ "epoch": 2.1794871794871793,
1203
+ "grad_norm": 0.08706427078942988,
1204
+ "learning_rate": 9.248457803103476e-06,
1205
+ "loss": 1.0038,
1206
+ "step": 340
1207
+ },
1208
+ {
1209
+ "epoch": 2.1923076923076925,
1210
+ "grad_norm": 0.0851666955740436,
1211
+ "learning_rate": 9.237242197080045e-06,
1212
+ "loss": 1.0218,
1213
+ "step": 342
1214
+ },
1215
+ {
1216
+ "epoch": 2.2051282051282053,
1217
+ "grad_norm": 0.08446573269728049,
1218
+ "learning_rate": 9.225950427718974e-06,
1219
+ "loss": 1.0254,
1220
+ "step": 344
1221
+ },
1222
+ {
1223
+ "epoch": 2.217948717948718,
1224
+ "grad_norm": 0.08907279788471897,
1225
+ "learning_rate": 9.21458269798691e-06,
1226
+ "loss": 0.9916,
1227
+ "step": 346
1228
+ },
1229
+ {
1230
+ "epoch": 2.230769230769231,
1231
+ "grad_norm": 0.09072043470187022,
1232
+ "learning_rate": 9.203139212215868e-06,
1233
+ "loss": 1.0103,
1234
+ "step": 348
1235
+ },
1236
+ {
1237
+ "epoch": 2.2435897435897436,
1238
+ "grad_norm": 0.08618586552830075,
1239
+ "learning_rate": 9.191620176099559e-06,
1240
+ "loss": 0.9995,
1241
+ "step": 350
1242
+ },
1243
+ {
1244
+ "epoch": 2.2564102564102564,
1245
+ "grad_norm": 0.09111342426909275,
1246
+ "learning_rate": 9.180025796689692e-06,
1247
+ "loss": 1.0292,
1248
+ "step": 352
1249
+ },
1250
+ {
1251
+ "epoch": 2.269230769230769,
1252
+ "grad_norm": 0.2022564482536435,
1253
+ "learning_rate": 9.168356282392253e-06,
1254
+ "loss": 1.0226,
1255
+ "step": 354
1256
+ },
1257
+ {
1258
+ "epoch": 2.282051282051282,
1259
+ "grad_norm": 0.1039362123101456,
1260
+ "learning_rate": 9.156611842963753e-06,
1261
+ "loss": 1.0152,
1262
+ "step": 356
1263
+ },
1264
+ {
1265
+ "epoch": 2.2948717948717947,
1266
+ "grad_norm": 0.10035717927769394,
1267
+ "learning_rate": 9.144792689507471e-06,
1268
+ "loss": 1.0049,
1269
+ "step": 358
1270
+ },
1271
+ {
1272
+ "epoch": 2.3076923076923075,
1273
+ "grad_norm": 0.08924064734394851,
1274
+ "learning_rate": 9.132899034469648e-06,
1275
+ "loss": 0.9962,
1276
+ "step": 360
1277
+ },
1278
+ {
1279
+ "epoch": 2.3205128205128207,
1280
+ "grad_norm": 0.09443040073005612,
1281
+ "learning_rate": 9.120931091635669e-06,
1282
+ "loss": 0.9976,
1283
+ "step": 362
1284
+ },
1285
+ {
1286
+ "epoch": 2.3333333333333335,
1287
+ "grad_norm": 0.09377508422363312,
1288
+ "learning_rate": 9.108889076126226e-06,
1289
+ "loss": 1.0306,
1290
+ "step": 364
1291
+ },
1292
+ {
1293
+ "epoch": 2.3461538461538463,
1294
+ "grad_norm": 0.0895229930946655,
1295
+ "learning_rate": 9.09677320439345e-06,
1296
+ "loss": 1.0126,
1297
+ "step": 366
1298
+ },
1299
+ {
1300
+ "epoch": 2.358974358974359,
1301
+ "grad_norm": 0.08795872722111464,
1302
+ "learning_rate": 9.084583694217012e-06,
1303
+ "loss": 0.9926,
1304
+ "step": 368
1305
+ },
1306
+ {
1307
+ "epoch": 2.371794871794872,
1308
+ "grad_norm": 0.08704560136887454,
1309
+ "learning_rate": 9.072320764700223e-06,
1310
+ "loss": 0.9978,
1311
+ "step": 370
1312
+ },
1313
+ {
1314
+ "epoch": 2.3846153846153846,
1315
+ "grad_norm": 0.0898387630341298,
1316
+ "learning_rate": 9.059984636266082e-06,
1317
+ "loss": 1.0042,
1318
+ "step": 372
1319
+ },
1320
+ {
1321
+ "epoch": 2.3974358974358974,
1322
+ "grad_norm": 0.08357247562762515,
1323
+ "learning_rate": 9.047575530653324e-06,
1324
+ "loss": 1.0094,
1325
+ "step": 374
1326
+ },
1327
+ {
1328
+ "epoch": 2.41025641025641,
1329
+ "grad_norm": 0.0843437057196144,
1330
+ "learning_rate": 9.035093670912424e-06,
1331
+ "loss": 0.9966,
1332
+ "step": 376
1333
+ },
1334
+ {
1335
+ "epoch": 2.423076923076923,
1336
+ "grad_norm": 0.08357196997203281,
1337
+ "learning_rate": 9.022539281401601e-06,
1338
+ "loss": 1.0038,
1339
+ "step": 378
1340
+ },
1341
+ {
1342
+ "epoch": 2.435897435897436,
1343
+ "grad_norm": 0.08859683961596204,
1344
+ "learning_rate": 9.009912587782772e-06,
1345
+ "loss": 1.0133,
1346
+ "step": 380
1347
+ },
1348
+ {
1349
+ "epoch": 2.448717948717949,
1350
+ "grad_norm": 0.09024266497375917,
1351
+ "learning_rate": 8.997213817017508e-06,
1352
+ "loss": 0.9782,
1353
+ "step": 382
1354
+ },
1355
+ {
1356
+ "epoch": 2.4615384615384617,
1357
+ "grad_norm": 0.0960929339414081,
1358
+ "learning_rate": 8.984443197362938e-06,
1359
+ "loss": 1.0013,
1360
+ "step": 384
1361
+ },
1362
+ {
1363
+ "epoch": 2.4743589743589745,
1364
+ "grad_norm": 0.08862629313408348,
1365
+ "learning_rate": 8.971600958367668e-06,
1366
+ "loss": 1.0059,
1367
+ "step": 386
1368
+ },
1369
+ {
1370
+ "epoch": 2.4871794871794872,
1371
+ "grad_norm": 0.09201716039902362,
1372
+ "learning_rate": 8.958687330867634e-06,
1373
+ "loss": 1.0263,
1374
+ "step": 388
1375
+ },
1376
+ {
1377
+ "epoch": 2.5,
1378
+ "grad_norm": 0.08694363384662504,
1379
+ "learning_rate": 8.94570254698197e-06,
1380
+ "loss": 1.0163,
1381
+ "step": 390
1382
+ },
1383
+ {
1384
+ "epoch": 2.5128205128205128,
1385
+ "grad_norm": 0.09205164914341211,
1386
+ "learning_rate": 8.932646840108818e-06,
1387
+ "loss": 0.9865,
1388
+ "step": 392
1389
+ },
1390
+ {
1391
+ "epoch": 2.5256410256410255,
1392
+ "grad_norm": 0.09081872370987605,
1393
+ "learning_rate": 8.919520444921153e-06,
1394
+ "loss": 0.9819,
1395
+ "step": 394
1396
+ },
1397
+ {
1398
+ "epoch": 2.5384615384615383,
1399
+ "grad_norm": 0.08905442630582544,
1400
+ "learning_rate": 8.906323597362547e-06,
1401
+ "loss": 1.0171,
1402
+ "step": 396
1403
+ },
1404
+ {
1405
+ "epoch": 2.551282051282051,
1406
+ "grad_norm": 0.08717951944686292,
1407
+ "learning_rate": 8.893056534642938e-06,
1408
+ "loss": 1.0244,
1409
+ "step": 398
1410
+ },
1411
+ {
1412
+ "epoch": 2.564102564102564,
1413
+ "grad_norm": 0.09573458066741532,
1414
+ "learning_rate": 8.879719495234363e-06,
1415
+ "loss": 0.9848,
1416
+ "step": 400
1417
+ },
1418
+ {
1419
+ "epoch": 2.5769230769230766,
1420
+ "grad_norm": 0.0898624666623644,
1421
+ "learning_rate": 8.866312718866669e-06,
1422
+ "loss": 0.982,
1423
+ "step": 402
1424
+ },
1425
+ {
1426
+ "epoch": 2.58974358974359,
1427
+ "grad_norm": 0.09305658353350323,
1428
+ "learning_rate": 8.852836446523213e-06,
1429
+ "loss": 0.9742,
1430
+ "step": 404
1431
+ },
1432
+ {
1433
+ "epoch": 2.6025641025641026,
1434
+ "grad_norm": 0.08663704229153721,
1435
+ "learning_rate": 8.83929092043652e-06,
1436
+ "loss": 0.9783,
1437
+ "step": 406
1438
+ },
1439
+ {
1440
+ "epoch": 2.6153846153846154,
1441
+ "grad_norm": 0.08983846726156959,
1442
+ "learning_rate": 8.825676384083936e-06,
1443
+ "loss": 0.998,
1444
+ "step": 408
1445
+ },
1446
+ {
1447
+ "epoch": 2.628205128205128,
1448
+ "grad_norm": 0.09388895481313425,
1449
+ "learning_rate": 8.811993082183243e-06,
1450
+ "loss": 1.0005,
1451
+ "step": 410
1452
+ },
1453
+ {
1454
+ "epoch": 2.641025641025641,
1455
+ "grad_norm": 0.09226783931828283,
1456
+ "learning_rate": 8.798241260688273e-06,
1457
+ "loss": 1.0055,
1458
+ "step": 412
1459
+ },
1460
+ {
1461
+ "epoch": 2.6538461538461537,
1462
+ "grad_norm": 0.09021054214140613,
1463
+ "learning_rate": 8.784421166784476e-06,
1464
+ "loss": 0.9981,
1465
+ "step": 414
1466
+ },
1467
+ {
1468
+ "epoch": 2.6666666666666665,
1469
+ "grad_norm": 0.0860573848233807,
1470
+ "learning_rate": 8.770533048884483e-06,
1471
+ "loss": 1.0017,
1472
+ "step": 416
1473
+ },
1474
+ {
1475
+ "epoch": 2.6794871794871797,
1476
+ "grad_norm": 0.0880124822318372,
1477
+ "learning_rate": 8.756577156623636e-06,
1478
+ "loss": 0.9834,
1479
+ "step": 418
1480
+ },
1481
+ {
1482
+ "epoch": 2.6923076923076925,
1483
+ "grad_norm": 0.0867421199146975,
1484
+ "learning_rate": 8.742553740855507e-06,
1485
+ "loss": 0.9983,
1486
+ "step": 420
1487
+ },
1488
+ {
1489
+ "epoch": 2.7051282051282053,
1490
+ "grad_norm": 0.09006077507273828,
1491
+ "learning_rate": 8.728463053647382e-06,
1492
+ "loss": 0.9702,
1493
+ "step": 422
1494
+ },
1495
+ {
1496
+ "epoch": 2.717948717948718,
1497
+ "grad_norm": 0.08669250030062742,
1498
+ "learning_rate": 8.71430534827574e-06,
1499
+ "loss": 0.9952,
1500
+ "step": 424
1501
+ },
1502
+ {
1503
+ "epoch": 2.730769230769231,
1504
+ "grad_norm": 0.09026424854741899,
1505
+ "learning_rate": 8.700080879221689e-06,
1506
+ "loss": 1.0054,
1507
+ "step": 426
1508
+ },
1509
+ {
1510
+ "epoch": 2.7435897435897436,
1511
+ "grad_norm": 0.087975640704094,
1512
+ "learning_rate": 8.685789902166395e-06,
1513
+ "loss": 0.9845,
1514
+ "step": 428
1515
+ },
1516
+ {
1517
+ "epoch": 2.7564102564102564,
1518
+ "grad_norm": 0.08642431755631451,
1519
+ "learning_rate": 8.671432673986493e-06,
1520
+ "loss": 0.9791,
1521
+ "step": 430
1522
+ },
1523
+ {
1524
+ "epoch": 2.769230769230769,
1525
+ "grad_norm": 0.08649701419340423,
1526
+ "learning_rate": 8.657009452749466e-06,
1527
+ "loss": 0.9752,
1528
+ "step": 432
1529
+ },
1530
+ {
1531
+ "epoch": 2.782051282051282,
1532
+ "grad_norm": 0.0879183947838203,
1533
+ "learning_rate": 8.642520497709001e-06,
1534
+ "loss": 0.9788,
1535
+ "step": 434
1536
+ },
1537
+ {
1538
+ "epoch": 2.7948717948717947,
1539
+ "grad_norm": 0.08596416297337815,
1540
+ "learning_rate": 8.627966069300332e-06,
1541
+ "loss": 0.9807,
1542
+ "step": 436
1543
+ },
1544
+ {
1545
+ "epoch": 2.8076923076923075,
1546
+ "grad_norm": 0.08918860363970792,
1547
+ "learning_rate": 8.613346429135567e-06,
1548
+ "loss": 0.9958,
1549
+ "step": 438
1550
+ },
1551
+ {
1552
+ "epoch": 2.8205128205128203,
1553
+ "grad_norm": 0.08972585580799317,
1554
+ "learning_rate": 8.598661839998972e-06,
1555
+ "loss": 0.9895,
1556
+ "step": 440
1557
+ },
1558
+ {
1559
+ "epoch": 2.8333333333333335,
1560
+ "grad_norm": 0.08703685151364528,
1561
+ "learning_rate": 8.583912565842258e-06,
1562
+ "loss": 0.9652,
1563
+ "step": 442
1564
+ },
1565
+ {
1566
+ "epoch": 2.8461538461538463,
1567
+ "grad_norm": 0.08688465565057563,
1568
+ "learning_rate": 8.569098871779828e-06,
1569
+ "loss": 0.9984,
1570
+ "step": 444
1571
+ },
1572
+ {
1573
+ "epoch": 2.858974358974359,
1574
+ "grad_norm": 0.08809758545326962,
1575
+ "learning_rate": 8.554221024084019e-06,
1576
+ "loss": 0.9905,
1577
+ "step": 446
1578
+ },
1579
+ {
1580
+ "epoch": 2.871794871794872,
1581
+ "grad_norm": 0.08572911529655777,
1582
+ "learning_rate": 8.539279290180315e-06,
1583
+ "loss": 0.9692,
1584
+ "step": 448
1585
+ },
1586
+ {
1587
+ "epoch": 2.8846153846153846,
1588
+ "grad_norm": 0.08836722634323343,
1589
+ "learning_rate": 8.524273938642539e-06,
1590
+ "loss": 0.9547,
1591
+ "step": 450
1592
+ },
1593
+ {
1594
+ "epoch": 2.8974358974358974,
1595
+ "grad_norm": 0.09242854914045788,
1596
+ "learning_rate": 8.509205239188017e-06,
1597
+ "loss": 0.9838,
1598
+ "step": 452
1599
+ },
1600
+ {
1601
+ "epoch": 2.91025641025641,
1602
+ "grad_norm": 0.08849881930024005,
1603
+ "learning_rate": 8.494073462672743e-06,
1604
+ "loss": 0.9615,
1605
+ "step": 454
1606
+ },
1607
+ {
1608
+ "epoch": 2.9230769230769234,
1609
+ "grad_norm": 0.08854620618403236,
1610
+ "learning_rate": 8.478878881086505e-06,
1611
+ "loss": 0.9977,
1612
+ "step": 456
1613
+ },
1614
+ {
1615
+ "epoch": 2.935897435897436,
1616
+ "grad_norm": 0.094665430731143,
1617
+ "learning_rate": 8.463621767547998e-06,
1618
+ "loss": 0.9927,
1619
+ "step": 458
1620
+ },
1621
+ {
1622
+ "epoch": 2.948717948717949,
1623
+ "grad_norm": 0.09196410792880014,
1624
+ "learning_rate": 8.448302396299906e-06,
1625
+ "loss": 1.0113,
1626
+ "step": 460
1627
+ },
1628
+ {
1629
+ "epoch": 2.9615384615384617,
1630
+ "grad_norm": 0.09036486236859728,
1631
+ "learning_rate": 8.432921042703985e-06,
1632
+ "loss": 0.9457,
1633
+ "step": 462
1634
+ },
1635
+ {
1636
+ "epoch": 2.9743589743589745,
1637
+ "grad_norm": 0.08576032950610284,
1638
+ "learning_rate": 8.417477983236107e-06,
1639
+ "loss": 0.9645,
1640
+ "step": 464
1641
+ },
1642
+ {
1643
+ "epoch": 2.9871794871794872,
1644
+ "grad_norm": 0.08403590001526823,
1645
+ "learning_rate": 8.401973495481289e-06,
1646
+ "loss": 0.9544,
1647
+ "step": 466
1648
+ },
1649
+ {
1650
+ "epoch": 3.0,
1651
+ "grad_norm": 0.09355532269950335,
1652
+ "learning_rate": 8.386407858128707e-06,
1653
+ "loss": 0.9719,
1654
+ "step": 468
1655
+ },
1656
+ {
1657
+ "epoch": 3.0128205128205128,
1658
+ "grad_norm": 0.08685232548889178,
1659
+ "learning_rate": 8.370781350966683e-06,
1660
+ "loss": 0.8933,
1661
+ "step": 470
1662
+ },
1663
+ {
1664
+ "epoch": 3.0256410256410255,
1665
+ "grad_norm": 0.10917681684685593,
1666
+ "learning_rate": 8.355094254877665e-06,
1667
+ "loss": 0.9222,
1668
+ "step": 472
1669
+ },
1670
+ {
1671
+ "epoch": 3.0384615384615383,
1672
+ "grad_norm": 0.09821414680349456,
1673
+ "learning_rate": 8.339346851833163e-06,
1674
+ "loss": 0.9187,
1675
+ "step": 474
1676
+ },
1677
+ {
1678
+ "epoch": 3.051282051282051,
1679
+ "grad_norm": 0.0953257584501641,
1680
+ "learning_rate": 8.323539424888695e-06,
1681
+ "loss": 0.9068,
1682
+ "step": 476
1683
+ },
1684
+ {
1685
+ "epoch": 3.064102564102564,
1686
+ "grad_norm": 0.10096821936698265,
1687
+ "learning_rate": 8.30767225817869e-06,
1688
+ "loss": 0.9005,
1689
+ "step": 478
1690
+ },
1691
+ {
1692
+ "epoch": 3.076923076923077,
1693
+ "grad_norm": 0.09745049198474258,
1694
+ "learning_rate": 8.291745636911382e-06,
1695
+ "loss": 0.8955,
1696
+ "step": 480
1697
+ },
1698
+ {
1699
+ "epoch": 3.08974358974359,
1700
+ "grad_norm": 0.09581071499737452,
1701
+ "learning_rate": 8.27575984736369e-06,
1702
+ "loss": 0.9034,
1703
+ "step": 482
1704
+ },
1705
+ {
1706
+ "epoch": 3.1025641025641026,
1707
+ "grad_norm": 0.09048589565605356,
1708
+ "learning_rate": 8.259715176876069e-06,
1709
+ "loss": 0.8964,
1710
+ "step": 484
1711
+ },
1712
+ {
1713
+ "epoch": 3.1153846153846154,
1714
+ "grad_norm": 0.09408149538192938,
1715
+ "learning_rate": 8.243611913847337e-06,
1716
+ "loss": 0.9157,
1717
+ "step": 486
1718
+ },
1719
+ {
1720
+ "epoch": 3.128205128205128,
1721
+ "grad_norm": 0.0947487050346647,
1722
+ "learning_rate": 8.2274503477295e-06,
1723
+ "loss": 0.9053,
1724
+ "step": 488
1725
+ },
1726
+ {
1727
+ "epoch": 3.141025641025641,
1728
+ "grad_norm": 0.09366500902355888,
1729
+ "learning_rate": 8.211230769022552e-06,
1730
+ "loss": 0.8925,
1731
+ "step": 490
1732
+ },
1733
+ {
1734
+ "epoch": 3.1538461538461537,
1735
+ "grad_norm": 0.09167161100151112,
1736
+ "learning_rate": 8.19495346926924e-06,
1737
+ "loss": 0.9165,
1738
+ "step": 492
1739
+ },
1740
+ {
1741
+ "epoch": 3.1666666666666665,
1742
+ "grad_norm": 0.09307041831758973,
1743
+ "learning_rate": 8.178618741049841e-06,
1744
+ "loss": 0.8989,
1745
+ "step": 494
1746
+ },
1747
+ {
1748
+ "epoch": 3.1794871794871793,
1749
+ "grad_norm": 0.09585560939367876,
1750
+ "learning_rate": 8.162226877976886e-06,
1751
+ "loss": 0.9147,
1752
+ "step": 496
1753
+ },
1754
+ {
1755
+ "epoch": 3.1923076923076925,
1756
+ "grad_norm": 0.09180060088840723,
1757
+ "learning_rate": 8.145778174689897e-06,
1758
+ "loss": 0.8882,
1759
+ "step": 498
1760
+ },
1761
+ {
1762
+ "epoch": 3.2051282051282053,
1763
+ "grad_norm": 0.09609878354099273,
1764
+ "learning_rate": 8.129272926850079e-06,
1765
+ "loss": 0.8744,
1766
+ "step": 500
1767
+ },
1768
+ {
1769
+ "epoch": 3.217948717948718,
1770
+ "grad_norm": 0.09691473472460625,
1771
+ "learning_rate": 8.112711431135014e-06,
1772
+ "loss": 0.8736,
1773
+ "step": 502
1774
+ },
1775
+ {
1776
+ "epoch": 3.230769230769231,
1777
+ "grad_norm": 0.09236636322834278,
1778
+ "learning_rate": 8.096093985233323e-06,
1779
+ "loss": 0.848,
1780
+ "step": 504
1781
+ },
1782
+ {
1783
+ "epoch": 3.2435897435897436,
1784
+ "grad_norm": 0.09704717599279773,
1785
+ "learning_rate": 8.079420887839316e-06,
1786
+ "loss": 0.8844,
1787
+ "step": 506
1788
+ },
1789
+ {
1790
+ "epoch": 3.2564102564102564,
1791
+ "grad_norm": 0.09939291409466518,
1792
+ "learning_rate": 8.062692438647628e-06,
1793
+ "loss": 0.8866,
1794
+ "step": 508
1795
+ },
1796
+ {
1797
+ "epoch": 3.269230769230769,
1798
+ "grad_norm": 0.09353962075083472,
1799
+ "learning_rate": 8.045908938347828e-06,
1800
+ "loss": 0.8742,
1801
+ "step": 510
1802
+ },
1803
+ {
1804
+ "epoch": 3.282051282051282,
1805
+ "grad_norm": 0.09465310178443197,
1806
+ "learning_rate": 8.029070688619013e-06,
1807
+ "loss": 0.8833,
1808
+ "step": 512
1809
+ },
1810
+ {
1811
+ "epoch": 3.2948717948717947,
1812
+ "grad_norm": 0.09443637715651476,
1813
+ "learning_rate": 8.012177992124385e-06,
1814
+ "loss": 0.8794,
1815
+ "step": 514
1816
+ },
1817
+ {
1818
+ "epoch": 3.3076923076923075,
1819
+ "grad_norm": 0.09728431520292821,
1820
+ "learning_rate": 7.995231152505815e-06,
1821
+ "loss": 0.8732,
1822
+ "step": 516
1823
+ },
1824
+ {
1825
+ "epoch": 3.3205128205128207,
1826
+ "grad_norm": 0.09428493650909285,
1827
+ "learning_rate": 7.978230474378383e-06,
1828
+ "loss": 0.8597,
1829
+ "step": 518
1830
+ },
1831
+ {
1832
+ "epoch": 3.3333333333333335,
1833
+ "grad_norm": 0.09850772889396305,
1834
+ "learning_rate": 7.961176263324902e-06,
1835
+ "loss": 0.8624,
1836
+ "step": 520
1837
+ },
1838
+ {
1839
+ "epoch": 3.3461538461538463,
1840
+ "grad_norm": 0.09087037549609535,
1841
+ "learning_rate": 7.944068825890424e-06,
1842
+ "loss": 0.8821,
1843
+ "step": 522
1844
+ },
1845
+ {
1846
+ "epoch": 3.358974358974359,
1847
+ "grad_norm": 0.09180369503983593,
1848
+ "learning_rate": 7.92690846957673e-06,
1849
+ "loss": 0.8688,
1850
+ "step": 524
1851
+ },
1852
+ {
1853
+ "epoch": 3.371794871794872,
1854
+ "grad_norm": 0.09491604280681391,
1855
+ "learning_rate": 7.909695502836814e-06,
1856
+ "loss": 0.8647,
1857
+ "step": 526
1858
+ },
1859
+ {
1860
+ "epoch": 3.3846153846153846,
1861
+ "grad_norm": 0.09921876854138406,
1862
+ "learning_rate": 7.892430235069317e-06,
1863
+ "loss": 0.8869,
1864
+ "step": 528
1865
+ },
1866
+ {
1867
+ "epoch": 3.3974358974358974,
1868
+ "grad_norm": 0.09457741703712105,
1869
+ "learning_rate": 7.875112976612984e-06,
1870
+ "loss": 0.8639,
1871
+ "step": 530
1872
+ },
1873
+ {
1874
+ "epoch": 3.41025641025641,
1875
+ "grad_norm": 0.09583219613481893,
1876
+ "learning_rate": 7.857744038741076e-06,
1877
+ "loss": 0.8805,
1878
+ "step": 532
1879
+ },
1880
+ {
1881
+ "epoch": 3.423076923076923,
1882
+ "grad_norm": 0.09260516206658106,
1883
+ "learning_rate": 7.84032373365578e-06,
1884
+ "loss": 0.8603,
1885
+ "step": 534
1886
+ },
1887
+ {
1888
+ "epoch": 3.435897435897436,
1889
+ "grad_norm": 0.09932108403192164,
1890
+ "learning_rate": 7.822852374482597e-06,
1891
+ "loss": 0.8658,
1892
+ "step": 536
1893
+ },
1894
+ {
1895
+ "epoch": 3.448717948717949,
1896
+ "grad_norm": 0.09728531208245553,
1897
+ "learning_rate": 7.805330275264707e-06,
1898
+ "loss": 0.8536,
1899
+ "step": 538
1900
+ },
1901
+ {
1902
+ "epoch": 3.4615384615384617,
1903
+ "grad_norm": 0.09952432033061036,
1904
+ "learning_rate": 7.787757750957335e-06,
1905
+ "loss": 0.8763,
1906
+ "step": 540
1907
+ },
1908
+ {
1909
+ "epoch": 3.4743589743589745,
1910
+ "grad_norm": 0.09845329832112057,
1911
+ "learning_rate": 7.77013511742208e-06,
1912
+ "loss": 0.8658,
1913
+ "step": 542
1914
+ },
1915
+ {
1916
+ "epoch": 3.4871794871794872,
1917
+ "grad_norm": 0.10349699075619775,
1918
+ "learning_rate": 7.752462691421245e-06,
1919
+ "loss": 0.8538,
1920
+ "step": 544
1921
+ },
1922
+ {
1923
+ "epoch": 3.5,
1924
+ "grad_norm": 0.15469316317671902,
1925
+ "learning_rate": 7.734740790612137e-06,
1926
+ "loss": 0.8644,
1927
+ "step": 546
1928
+ },
1929
+ {
1930
+ "epoch": 3.5128205128205128,
1931
+ "grad_norm": 0.09649309700047885,
1932
+ "learning_rate": 7.716969733541357e-06,
1933
+ "loss": 0.8755,
1934
+ "step": 548
1935
+ },
1936
+ {
1937
+ "epoch": 3.5256410256410255,
1938
+ "grad_norm": 0.09860823779259517,
1939
+ "learning_rate": 7.699149839639086e-06,
1940
+ "loss": 0.8471,
1941
+ "step": 550
1942
+ },
1943
+ {
1944
+ "epoch": 3.5384615384615383,
1945
+ "grad_norm": 0.09867635522074884,
1946
+ "learning_rate": 7.681281429213328e-06,
1947
+ "loss": 0.8512,
1948
+ "step": 552
1949
+ },
1950
+ {
1951
+ "epoch": 3.551282051282051,
1952
+ "grad_norm": 0.09856703594780034,
1953
+ "learning_rate": 7.663364823444157e-06,
1954
+ "loss": 0.8581,
1955
+ "step": 554
1956
+ },
1957
+ {
1958
+ "epoch": 3.564102564102564,
1959
+ "grad_norm": 0.10120010505390695,
1960
+ "learning_rate": 7.645400344377953e-06,
1961
+ "loss": 0.8647,
1962
+ "step": 556
1963
+ },
1964
+ {
1965
+ "epoch": 3.5769230769230766,
1966
+ "grad_norm": 0.09353647856294549,
1967
+ "learning_rate": 7.627388314921602e-06,
1968
+ "loss": 0.8563,
1969
+ "step": 558
1970
+ },
1971
+ {
1972
+ "epoch": 3.58974358974359,
1973
+ "grad_norm": 0.097727849555005,
1974
+ "learning_rate": 7.609329058836694e-06,
1975
+ "loss": 0.8629,
1976
+ "step": 560
1977
+ },
1978
+ {
1979
+ "epoch": 3.6025641025641026,
1980
+ "grad_norm": 0.09185843649741915,
1981
+ "learning_rate": 7.59122290073371e-06,
1982
+ "loss": 0.8517,
1983
+ "step": 562
1984
+ },
1985
+ {
1986
+ "epoch": 3.6153846153846154,
1987
+ "grad_norm": 0.16467906411387448,
1988
+ "learning_rate": 7.5730701660661795e-06,
1989
+ "loss": 0.8588,
1990
+ "step": 564
1991
+ },
1992
+ {
1993
+ "epoch": 3.628205128205128,
1994
+ "grad_norm": 0.10490078157659109,
1995
+ "learning_rate": 7.554871181124836e-06,
1996
+ "loss": 0.8916,
1997
+ "step": 566
1998
+ },
1999
+ {
2000
+ "epoch": 3.641025641025641,
2001
+ "grad_norm": 0.09862237486460196,
2002
+ "learning_rate": 7.536626273031747e-06,
2003
+ "loss": 0.8486,
2004
+ "step": 568
2005
+ },
2006
+ {
2007
+ "epoch": 3.6538461538461537,
2008
+ "grad_norm": 0.09855168103779419,
2009
+ "learning_rate": 7.5183357697344395e-06,
2010
+ "loss": 0.8532,
2011
+ "step": 570
2012
+ },
2013
+ {
2014
+ "epoch": 3.6666666666666665,
2015
+ "grad_norm": 0.09943631897387811,
2016
+ "learning_rate": 7.500000000000001e-06,
2017
+ "loss": 0.8643,
2018
+ "step": 572
2019
+ },
2020
+ {
2021
+ "epoch": 3.6794871794871797,
2022
+ "grad_norm": 0.09470558794565637,
2023
+ "learning_rate": 7.481619293409173e-06,
2024
+ "loss": 0.8705,
2025
+ "step": 574
2026
+ },
2027
+ {
2028
+ "epoch": 3.6923076923076925,
2029
+ "grad_norm": 0.09434833275033037,
2030
+ "learning_rate": 7.4631939803504215e-06,
2031
+ "loss": 0.8597,
2032
+ "step": 576
2033
+ },
2034
+ {
2035
+ "epoch": 3.7051282051282053,
2036
+ "grad_norm": 0.09852625213361811,
2037
+ "learning_rate": 7.44472439201401e-06,
2038
+ "loss": 0.8665,
2039
+ "step": 578
2040
+ },
2041
+ {
2042
+ "epoch": 3.717948717948718,
2043
+ "grad_norm": 0.09522012579767557,
2044
+ "learning_rate": 7.426210860386032e-06,
2045
+ "loss": 0.8373,
2046
+ "step": 580
2047
+ },
2048
+ {
2049
+ "epoch": 3.730769230769231,
2050
+ "grad_norm": 0.09872214935386595,
2051
+ "learning_rate": 7.407653718242449e-06,
2052
+ "loss": 0.8266,
2053
+ "step": 582
2054
+ },
2055
+ {
2056
+ "epoch": 3.7435897435897436,
2057
+ "grad_norm": 0.09611754066886699,
2058
+ "learning_rate": 7.3890532991431174e-06,
2059
+ "loss": 0.8422,
2060
+ "step": 584
2061
+ },
2062
+ {
2063
+ "epoch": 3.7564102564102564,
2064
+ "grad_norm": 0.09430702389773353,
2065
+ "learning_rate": 7.370409937425781e-06,
2066
+ "loss": 0.8349,
2067
+ "step": 586
2068
+ },
2069
+ {
2070
+ "epoch": 3.769230769230769,
2071
+ "grad_norm": 0.10000120202753963,
2072
+ "learning_rate": 7.3517239682000675e-06,
2073
+ "loss": 0.8589,
2074
+ "step": 588
2075
+ },
2076
+ {
2077
+ "epoch": 3.782051282051282,
2078
+ "grad_norm": 0.09477208728170344,
2079
+ "learning_rate": 7.332995727341462e-06,
2080
+ "loss": 0.8591,
2081
+ "step": 590
2082
+ },
2083
+ {
2084
+ "epoch": 3.7948717948717947,
2085
+ "grad_norm": 0.09696166000717225,
2086
+ "learning_rate": 7.314225551485273e-06,
2087
+ "loss": 0.8397,
2088
+ "step": 592
2089
+ },
2090
+ {
2091
+ "epoch": 3.8076923076923075,
2092
+ "grad_norm": 0.09621353397155066,
2093
+ "learning_rate": 7.295413778020579e-06,
2094
+ "loss": 0.8166,
2095
+ "step": 594
2096
+ },
2097
+ {
2098
+ "epoch": 3.8205128205128203,
2099
+ "grad_norm": 0.09692687114207367,
2100
+ "learning_rate": 7.276560745084167e-06,
2101
+ "loss": 0.8521,
2102
+ "step": 596
2103
+ },
2104
+ {
2105
+ "epoch": 3.8333333333333335,
2106
+ "grad_norm": 0.09885126357081214,
2107
+ "learning_rate": 7.257666791554448e-06,
2108
+ "loss": 0.8416,
2109
+ "step": 598
2110
+ },
2111
+ {
2112
+ "epoch": 3.8461538461538463,
2113
+ "grad_norm": 0.10239714078021848,
2114
+ "learning_rate": 7.2387322570453724e-06,
2115
+ "loss": 0.8324,
2116
+ "step": 600
2117
+ },
2118
+ {
2119
+ "epoch": 3.858974358974359,
2120
+ "grad_norm": 0.11251898784242197,
2121
+ "learning_rate": 7.219757481900325e-06,
2122
+ "loss": 0.835,
2123
+ "step": 602
2124
+ },
2125
+ {
2126
+ "epoch": 3.871794871794872,
2127
+ "grad_norm": 0.1005799166719958,
2128
+ "learning_rate": 7.2007428071860045e-06,
2129
+ "loss": 0.8035,
2130
+ "step": 604
2131
+ },
2132
+ {
2133
+ "epoch": 3.8846153846153846,
2134
+ "grad_norm": 0.10103534145014936,
2135
+ "learning_rate": 7.181688574686292e-06,
2136
+ "loss": 0.8709,
2137
+ "step": 606
2138
+ },
2139
+ {
2140
+ "epoch": 3.8974358974358974,
2141
+ "grad_norm": 0.10027552225015914,
2142
+ "learning_rate": 7.162595126896111e-06,
2143
+ "loss": 0.8319,
2144
+ "step": 608
2145
+ },
2146
+ {
2147
+ "epoch": 3.91025641025641,
2148
+ "grad_norm": 0.10075780749863547,
2149
+ "learning_rate": 7.143462807015271e-06,
2150
+ "loss": 0.8323,
2151
+ "step": 610
2152
+ },
2153
+ {
2154
+ "epoch": 3.9230769230769234,
2155
+ "grad_norm": 0.09472929060217589,
2156
+ "learning_rate": 7.1242919589422974e-06,
2157
+ "loss": 0.8185,
2158
+ "step": 612
2159
+ },
2160
+ {
2161
+ "epoch": 3.935897435897436,
2162
+ "grad_norm": 0.09472378350788888,
2163
+ "learning_rate": 7.105082927268247e-06,
2164
+ "loss": 0.8304,
2165
+ "step": 614
2166
+ },
2167
+ {
2168
+ "epoch": 3.948717948717949,
2169
+ "grad_norm": 0.10337359146731352,
2170
+ "learning_rate": 7.085836057270521e-06,
2171
+ "loss": 0.8174,
2172
+ "step": 616
2173
+ },
2174
+ {
2175
+ "epoch": 3.9615384615384617,
2176
+ "grad_norm": 0.0983672088113577,
2177
+ "learning_rate": 7.066551694906651e-06,
2178
+ "loss": 0.8322,
2179
+ "step": 618
2180
+ },
2181
+ {
2182
+ "epoch": 3.9743589743589745,
2183
+ "grad_norm": 0.1019500525911841,
2184
+ "learning_rate": 7.047230186808085e-06,
2185
+ "loss": 0.8021,
2186
+ "step": 620
2187
+ },
2188
+ {
2189
+ "epoch": 3.9871794871794872,
2190
+ "grad_norm": 0.09750574300751329,
2191
+ "learning_rate": 7.027871880273959e-06,
2192
+ "loss": 0.7983,
2193
+ "step": 622
2194
+ },
2195
+ {
2196
+ "epoch": 4.0,
2197
+ "grad_norm": 0.10208128186441004,
2198
+ "learning_rate": 7.008477123264849e-06,
2199
+ "loss": 0.8239,
2200
+ "step": 624
2201
+ },
2202
+ {
2203
+ "epoch": 4.012820512820513,
2204
+ "grad_norm": 0.10734300522197977,
2205
+ "learning_rate": 6.989046264396516e-06,
2206
+ "loss": 0.7678,
2207
+ "step": 626
2208
+ },
2209
+ {
2210
+ "epoch": 4.0256410256410255,
2211
+ "grad_norm": 0.102980617519378,
2212
+ "learning_rate": 6.96957965293365e-06,
2213
+ "loss": 0.7377,
2214
+ "step": 628
2215
+ },
2216
+ {
2217
+ "epoch": 4.038461538461538,
2218
+ "grad_norm": 0.12545611352143843,
2219
+ "learning_rate": 6.9500776387835785e-06,
2220
+ "loss": 0.7581,
2221
+ "step": 630
2222
+ },
2223
+ {
2224
+ "epoch": 4.051282051282051,
2225
+ "grad_norm": 0.122707057481331,
2226
+ "learning_rate": 6.9305405724899876e-06,
2227
+ "loss": 0.7399,
2228
+ "step": 632
2229
+ },
2230
+ {
2231
+ "epoch": 4.064102564102564,
2232
+ "grad_norm": 0.11397293701236821,
2233
+ "learning_rate": 6.91096880522661e-06,
2234
+ "loss": 0.7447,
2235
+ "step": 634
2236
+ },
2237
+ {
2238
+ "epoch": 4.076923076923077,
2239
+ "grad_norm": 0.13487306338562802,
2240
+ "learning_rate": 6.891362688790925e-06,
2241
+ "loss": 0.7546,
2242
+ "step": 636
2243
+ },
2244
+ {
2245
+ "epoch": 4.089743589743589,
2246
+ "grad_norm": 0.10896326697255375,
2247
+ "learning_rate": 6.871722575597829e-06,
2248
+ "loss": 0.7579,
2249
+ "step": 638
2250
+ },
2251
+ {
2252
+ "epoch": 4.102564102564102,
2253
+ "grad_norm": 0.11165624709106642,
2254
+ "learning_rate": 6.8520488186733e-06,
2255
+ "loss": 0.7517,
2256
+ "step": 640
2257
+ },
2258
+ {
2259
+ "epoch": 4.115384615384615,
2260
+ "grad_norm": 0.11518303790398043,
2261
+ "learning_rate": 6.832341771648057e-06,
2262
+ "loss": 0.7459,
2263
+ "step": 642
2264
+ },
2265
+ {
2266
+ "epoch": 4.128205128205128,
2267
+ "grad_norm": 0.11119475069076129,
2268
+ "learning_rate": 6.812601788751192e-06,
2269
+ "loss": 0.7825,
2270
+ "step": 644
2271
+ },
2272
+ {
2273
+ "epoch": 4.141025641025641,
2274
+ "grad_norm": 0.10743202492055963,
2275
+ "learning_rate": 6.792829224803816e-06,
2276
+ "loss": 0.7395,
2277
+ "step": 646
2278
+ },
2279
+ {
2280
+ "epoch": 4.153846153846154,
2281
+ "grad_norm": 0.10582985557685172,
2282
+ "learning_rate": 6.773024435212678e-06,
2283
+ "loss": 0.7637,
2284
+ "step": 648
2285
+ },
2286
+ {
2287
+ "epoch": 4.166666666666667,
2288
+ "grad_norm": 0.10835455281881788,
2289
+ "learning_rate": 6.753187775963773e-06,
2290
+ "loss": 0.7576,
2291
+ "step": 650
2292
+ },
2293
+ {
2294
+ "epoch": 4.17948717948718,
2295
+ "grad_norm": 0.1107213708183791,
2296
+ "learning_rate": 6.733319603615941e-06,
2297
+ "loss": 0.7519,
2298
+ "step": 652
2299
+ },
2300
+ {
2301
+ "epoch": 4.1923076923076925,
2302
+ "grad_norm": 0.11143239841237282,
2303
+ "learning_rate": 6.713420275294467e-06,
2304
+ "loss": 0.7421,
2305
+ "step": 654
2306
+ },
2307
+ {
2308
+ "epoch": 4.205128205128205,
2309
+ "grad_norm": 0.10135913047939792,
2310
+ "learning_rate": 6.693490148684654e-06,
2311
+ "loss": 0.7503,
2312
+ "step": 656
2313
+ },
2314
+ {
2315
+ "epoch": 4.217948717948718,
2316
+ "grad_norm": 0.10935890173613132,
2317
+ "learning_rate": 6.673529582025398e-06,
2318
+ "loss": 0.7469,
2319
+ "step": 658
2320
+ },
2321
+ {
2322
+ "epoch": 4.230769230769231,
2323
+ "grad_norm": 0.10682800250997206,
2324
+ "learning_rate": 6.653538934102743e-06,
2325
+ "loss": 0.7519,
2326
+ "step": 660
2327
+ },
2328
+ {
2329
+ "epoch": 4.243589743589744,
2330
+ "grad_norm": 0.11174312070750286,
2331
+ "learning_rate": 6.633518564243442e-06,
2332
+ "loss": 0.7388,
2333
+ "step": 662
2334
+ },
2335
+ {
2336
+ "epoch": 4.256410256410256,
2337
+ "grad_norm": 0.10996882792698588,
2338
+ "learning_rate": 6.6134688323084884e-06,
2339
+ "loss": 0.735,
2340
+ "step": 664
2341
+ },
2342
+ {
2343
+ "epoch": 4.269230769230769,
2344
+ "grad_norm": 0.11513381552989353,
2345
+ "learning_rate": 6.593390098686653e-06,
2346
+ "loss": 0.7266,
2347
+ "step": 666
2348
+ },
2349
+ {
2350
+ "epoch": 4.282051282051282,
2351
+ "grad_norm": 0.10383307615951057,
2352
+ "learning_rate": 6.573282724288001e-06,
2353
+ "loss": 0.7354,
2354
+ "step": 668
2355
+ },
2356
+ {
2357
+ "epoch": 4.294871794871795,
2358
+ "grad_norm": 0.10064526192695795,
2359
+ "learning_rate": 6.553147070537413e-06,
2360
+ "loss": 0.7316,
2361
+ "step": 670
2362
+ },
2363
+ {
2364
+ "epoch": 4.3076923076923075,
2365
+ "grad_norm": 0.10546529880700707,
2366
+ "learning_rate": 6.532983499368078e-06,
2367
+ "loss": 0.7345,
2368
+ "step": 672
2369
+ },
2370
+ {
2371
+ "epoch": 4.32051282051282,
2372
+ "grad_norm": 0.10452514955349174,
2373
+ "learning_rate": 6.512792373215e-06,
2374
+ "loss": 0.7552,
2375
+ "step": 674
2376
+ },
2377
+ {
2378
+ "epoch": 4.333333333333333,
2379
+ "grad_norm": 0.10501851155628895,
2380
+ "learning_rate": 6.492574055008474e-06,
2381
+ "loss": 0.715,
2382
+ "step": 676
2383
+ },
2384
+ {
2385
+ "epoch": 4.346153846153846,
2386
+ "grad_norm": 0.10411036896818421,
2387
+ "learning_rate": 6.472328908167562e-06,
2388
+ "loss": 0.729,
2389
+ "step": 678
2390
+ },
2391
+ {
2392
+ "epoch": 4.358974358974359,
2393
+ "grad_norm": 0.11127049713049718,
2394
+ "learning_rate": 6.452057296593568e-06,
2395
+ "loss": 0.744,
2396
+ "step": 680
2397
+ },
2398
+ {
2399
+ "epoch": 4.371794871794872,
2400
+ "grad_norm": 0.12676881136201423,
2401
+ "learning_rate": 6.431759584663492e-06,
2402
+ "loss": 0.7588,
2403
+ "step": 682
2404
+ },
2405
+ {
2406
+ "epoch": 4.384615384615385,
2407
+ "grad_norm": 0.105870619579206,
2408
+ "learning_rate": 6.411436137223479e-06,
2409
+ "loss": 0.7247,
2410
+ "step": 684
2411
+ },
2412
+ {
2413
+ "epoch": 4.397435897435898,
2414
+ "grad_norm": 0.10374120826824249,
2415
+ "learning_rate": 6.391087319582264e-06,
2416
+ "loss": 0.7309,
2417
+ "step": 686
2418
+ },
2419
+ {
2420
+ "epoch": 4.410256410256411,
2421
+ "grad_norm": 0.10865846153479375,
2422
+ "learning_rate": 6.370713497504607e-06,
2423
+ "loss": 0.7482,
2424
+ "step": 688
2425
+ },
2426
+ {
2427
+ "epoch": 4.423076923076923,
2428
+ "grad_norm": 0.11160085810481411,
2429
+ "learning_rate": 6.350315037204714e-06,
2430
+ "loss": 0.7254,
2431
+ "step": 690
2432
+ },
2433
+ {
2434
+ "epoch": 4.435897435897436,
2435
+ "grad_norm": 0.10544486611527323,
2436
+ "learning_rate": 6.329892305339659e-06,
2437
+ "loss": 0.7053,
2438
+ "step": 692
2439
+ },
2440
+ {
2441
+ "epoch": 4.448717948717949,
2442
+ "grad_norm": 0.10611707780750092,
2443
+ "learning_rate": 6.309445669002787e-06,
2444
+ "loss": 0.7078,
2445
+ "step": 694
2446
+ },
2447
+ {
2448
+ "epoch": 4.461538461538462,
2449
+ "grad_norm": 0.10588157071847835,
2450
+ "learning_rate": 6.288975495717124e-06,
2451
+ "loss": 0.7412,
2452
+ "step": 696
2453
+ },
2454
+ {
2455
+ "epoch": 4.4743589743589745,
2456
+ "grad_norm": 0.10785564192135899,
2457
+ "learning_rate": 6.268482153428763e-06,
2458
+ "loss": 0.7289,
2459
+ "step": 698
2460
+ },
2461
+ {
2462
+ "epoch": 4.487179487179487,
2463
+ "grad_norm": 0.10456174831291559,
2464
+ "learning_rate": 6.247966010500258e-06,
2465
+ "loss": 0.7233,
2466
+ "step": 700
2467
+ },
2468
+ {
2469
+ "epoch": 4.5,
2470
+ "grad_norm": 0.10739198046560715,
2471
+ "learning_rate": 6.227427435703997e-06,
2472
+ "loss": 0.7308,
2473
+ "step": 702
2474
+ },
2475
+ {
2476
+ "epoch": 4.512820512820513,
2477
+ "grad_norm": 0.11062331534549659,
2478
+ "learning_rate": 6.206866798215571e-06,
2479
+ "loss": 0.7188,
2480
+ "step": 704
2481
+ },
2482
+ {
2483
+ "epoch": 4.5256410256410255,
2484
+ "grad_norm": 0.1120412879852177,
2485
+ "learning_rate": 6.186284467607149e-06,
2486
+ "loss": 0.7149,
2487
+ "step": 706
2488
+ },
2489
+ {
2490
+ "epoch": 4.538461538461538,
2491
+ "grad_norm": 0.10581044212948068,
2492
+ "learning_rate": 6.165680813840822e-06,
2493
+ "loss": 0.7286,
2494
+ "step": 708
2495
+ },
2496
+ {
2497
+ "epoch": 4.551282051282051,
2498
+ "grad_norm": 0.10581925858925155,
2499
+ "learning_rate": 6.1450562072619635e-06,
2500
+ "loss": 0.6854,
2501
+ "step": 710
2502
+ },
2503
+ {
2504
+ "epoch": 4.564102564102564,
2505
+ "grad_norm": 0.11850925857398317,
2506
+ "learning_rate": 6.124411018592568e-06,
2507
+ "loss": 0.7215,
2508
+ "step": 712
2509
+ },
2510
+ {
2511
+ "epoch": 4.576923076923077,
2512
+ "grad_norm": 0.12029983367038724,
2513
+ "learning_rate": 6.103745618924587e-06,
2514
+ "loss": 0.7142,
2515
+ "step": 714
2516
+ },
2517
+ {
2518
+ "epoch": 4.589743589743589,
2519
+ "grad_norm": 0.10567103079137533,
2520
+ "learning_rate": 6.0830603797132574e-06,
2521
+ "loss": 0.7162,
2522
+ "step": 716
2523
+ },
2524
+ {
2525
+ "epoch": 4.602564102564102,
2526
+ "grad_norm": 0.10836686741052724,
2527
+ "learning_rate": 6.0623556727704306e-06,
2528
+ "loss": 0.7165,
2529
+ "step": 718
2530
+ },
2531
+ {
2532
+ "epoch": 4.615384615384615,
2533
+ "grad_norm": 0.11249604087548312,
2534
+ "learning_rate": 6.041631870257882e-06,
2535
+ "loss": 0.7383,
2536
+ "step": 720
2537
+ },
2538
+ {
2539
+ "epoch": 4.628205128205128,
2540
+ "grad_norm": 0.1082063599668396,
2541
+ "learning_rate": 6.020889344680627e-06,
2542
+ "loss": 0.6952,
2543
+ "step": 722
2544
+ },
2545
+ {
2546
+ "epoch": 4.641025641025641,
2547
+ "grad_norm": 0.10282892185990167,
2548
+ "learning_rate": 6.000128468880223e-06,
2549
+ "loss": 0.7167,
2550
+ "step": 724
2551
+ },
2552
+ {
2553
+ "epoch": 4.653846153846154,
2554
+ "grad_norm": 0.14775806059988206,
2555
+ "learning_rate": 5.979349616028067e-06,
2556
+ "loss": 0.7015,
2557
+ "step": 726
2558
+ },
2559
+ {
2560
+ "epoch": 4.666666666666667,
2561
+ "grad_norm": 0.1146560861251404,
2562
+ "learning_rate": 5.958553159618693e-06,
2563
+ "loss": 0.7213,
2564
+ "step": 728
2565
+ },
2566
+ {
2567
+ "epoch": 4.67948717948718,
2568
+ "grad_norm": 0.10561771243314702,
2569
+ "learning_rate": 5.937739473463047e-06,
2570
+ "loss": 0.7296,
2571
+ "step": 730
2572
+ },
2573
+ {
2574
+ "epoch": 4.6923076923076925,
2575
+ "grad_norm": 0.1030552904773058,
2576
+ "learning_rate": 5.916908931681781e-06,
2577
+ "loss": 0.7123,
2578
+ "step": 732
2579
+ },
2580
+ {
2581
+ "epoch": 4.705128205128205,
2582
+ "grad_norm": 0.11007539115142843,
2583
+ "learning_rate": 5.896061908698521e-06,
2584
+ "loss": 0.7048,
2585
+ "step": 734
2586
+ },
2587
+ {
2588
+ "epoch": 4.717948717948718,
2589
+ "grad_norm": 0.11416376306689043,
2590
+ "learning_rate": 5.8751987792331365e-06,
2591
+ "loss": 0.7137,
2592
+ "step": 736
2593
+ },
2594
+ {
2595
+ "epoch": 4.730769230769231,
2596
+ "grad_norm": 0.10152180107259362,
2597
+ "learning_rate": 5.854319918295012e-06,
2598
+ "loss": 0.7051,
2599
+ "step": 738
2600
+ },
2601
+ {
2602
+ "epoch": 4.743589743589744,
2603
+ "grad_norm": 0.11206883891832514,
2604
+ "learning_rate": 5.833425701176294e-06,
2605
+ "loss": 0.6923,
2606
+ "step": 740
2607
+ },
2608
+ {
2609
+ "epoch": 4.756410256410256,
2610
+ "grad_norm": 0.10804199427828234,
2611
+ "learning_rate": 5.812516503445158e-06,
2612
+ "loss": 0.6955,
2613
+ "step": 742
2614
+ },
2615
+ {
2616
+ "epoch": 4.769230769230769,
2617
+ "grad_norm": 0.10618536471151145,
2618
+ "learning_rate": 5.79159270093905e-06,
2619
+ "loss": 0.7051,
2620
+ "step": 744
2621
+ },
2622
+ {
2623
+ "epoch": 4.782051282051282,
2624
+ "grad_norm": 0.112445946670164,
2625
+ "learning_rate": 5.770654669757935e-06,
2626
+ "loss": 0.6862,
2627
+ "step": 746
2628
+ },
2629
+ {
2630
+ "epoch": 4.794871794871795,
2631
+ "grad_norm": 0.10623939719616725,
2632
+ "learning_rate": 5.749702786257529e-06,
2633
+ "loss": 0.7021,
2634
+ "step": 748
2635
+ },
2636
+ {
2637
+ "epoch": 4.8076923076923075,
2638
+ "grad_norm": 0.11066503537728437,
2639
+ "learning_rate": 5.7287374270425475e-06,
2640
+ "loss": 0.7083,
2641
+ "step": 750
2642
+ },
2643
+ {
2644
+ "epoch": 4.82051282051282,
2645
+ "grad_norm": 0.11956485729401434,
2646
+ "learning_rate": 5.707758968959923e-06,
2647
+ "loss": 0.7052,
2648
+ "step": 752
2649
+ },
2650
+ {
2651
+ "epoch": 4.833333333333333,
2652
+ "grad_norm": 0.11607859173183654,
2653
+ "learning_rate": 5.686767789092041e-06,
2654
+ "loss": 0.7114,
2655
+ "step": 754
2656
+ },
2657
+ {
2658
+ "epoch": 4.846153846153846,
2659
+ "grad_norm": 0.10875829497210732,
2660
+ "learning_rate": 5.6657642647499545e-06,
2661
+ "loss": 0.7159,
2662
+ "step": 756
2663
+ },
2664
+ {
2665
+ "epoch": 4.858974358974359,
2666
+ "grad_norm": 0.10952816111674243,
2667
+ "learning_rate": 5.644748773466606e-06,
2668
+ "loss": 0.7036,
2669
+ "step": 758
2670
+ },
2671
+ {
2672
+ "epoch": 4.871794871794872,
2673
+ "grad_norm": 0.10684780948629531,
2674
+ "learning_rate": 5.62372169299004e-06,
2675
+ "loss": 0.7225,
2676
+ "step": 760
2677
+ },
2678
+ {
2679
+ "epoch": 4.884615384615385,
2680
+ "grad_norm": 0.1047662448976948,
2681
+ "learning_rate": 5.6026834012766155e-06,
2682
+ "loss": 0.6805,
2683
+ "step": 762
2684
+ },
2685
+ {
2686
+ "epoch": 4.897435897435898,
2687
+ "grad_norm": 0.10955003114927836,
2688
+ "learning_rate": 5.581634276484211e-06,
2689
+ "loss": 0.6792,
2690
+ "step": 764
2691
+ },
2692
+ {
2693
+ "epoch": 4.910256410256411,
2694
+ "grad_norm": 0.10878018550941551,
2695
+ "learning_rate": 5.560574696965425e-06,
2696
+ "loss": 0.6921,
2697
+ "step": 766
2698
+ },
2699
+ {
2700
+ "epoch": 4.923076923076923,
2701
+ "grad_norm": 0.11093790171018045,
2702
+ "learning_rate": 5.539505041260779e-06,
2703
+ "loss": 0.6956,
2704
+ "step": 768
2705
+ },
2706
+ {
2707
+ "epoch": 4.935897435897436,
2708
+ "grad_norm": 0.1115655815203421,
2709
+ "learning_rate": 5.518425688091906e-06,
2710
+ "loss": 0.7024,
2711
+ "step": 770
2712
+ },
2713
+ {
2714
+ "epoch": 4.948717948717949,
2715
+ "grad_norm": 0.1131005595068268,
2716
+ "learning_rate": 5.497337016354757e-06,
2717
+ "loss": 0.7148,
2718
+ "step": 772
2719
+ },
2720
+ {
2721
+ "epoch": 4.961538461538462,
2722
+ "grad_norm": 0.11347516336979874,
2723
+ "learning_rate": 5.476239405112775e-06,
2724
+ "loss": 0.6816,
2725
+ "step": 774
2726
+ },
2727
+ {
2728
+ "epoch": 4.9743589743589745,
2729
+ "grad_norm": 0.10898186232548415,
2730
+ "learning_rate": 5.45513323359009e-06,
2731
+ "loss": 0.7273,
2732
+ "step": 776
2733
+ },
2734
+ {
2735
+ "epoch": 4.987179487179487,
2736
+ "grad_norm": 0.11549198646562549,
2737
+ "learning_rate": 5.434018881164702e-06,
2738
+ "loss": 0.6917,
2739
+ "step": 778
2740
+ },
2741
+ {
2742
+ "epoch": 5.0,
2743
+ "grad_norm": 0.10772346133987304,
2744
+ "learning_rate": 5.412896727361663e-06,
2745
+ "loss": 0.6863,
2746
+ "step": 780
2747
+ }
2748
+ ],
2749
+ "logging_steps": 2,
2750
+ "max_steps": 1560,
2751
+ "num_input_tokens_seen": 0,
2752
+ "num_train_epochs": 10,
2753
+ "save_steps": 500,
2754
+ "stateful_callbacks": {
2755
+ "TrainerControl": {
2756
+ "args": {
2757
+ "should_epoch_stop": false,
2758
+ "should_evaluate": false,
2759
+ "should_log": false,
2760
+ "should_save": true,
2761
+ "should_training_stop": false
2762
+ },
2763
+ "attributes": {}
2764
+ }
2765
+ },
2766
+ "total_flos": 3.1578354913325875e+19,
2767
+ "train_batch_size": 2,
2768
+ "trial_name": null,
2769
+ "trial_params": null
2770
+ }
uccix_instruct_191224_lr1e-5/checkpoint-780/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d03657189395bc20a651edd32d0f180bbab64bb031be8ead254fb2e38ffc37e
3
+ size 7288
uccix_instruct_191224_lr1e-5/checkpoint-780/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)