Upload folder using huggingface_hub
Browse files- uccix_instruct_191224_lr1e-5/checkpoint-780/config.json +30 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/generation_config.json +10 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/latest +1 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/model-00001-of-00006.safetensors +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/model-00002-of-00006.safetensors +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/model-00003-of-00006.safetensors +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/model-00004-of-00006.safetensors +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/model-00005-of-00006.safetensors +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/model-00006-of-00006.safetensors +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/model.safetensors.index.json +370 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_0.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_1.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_2.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_3.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_4.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_5.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_6.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_7.pth +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/scheduler.pt +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/special_tokens_map.json +24 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.json +0 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.model +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer_config.json +43 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/trainer_state.json +2770 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/training_args.bin +3 -0
- uccix_instruct_191224_lr1e-5/checkpoint-780/zero_to_fp32.py +592 -0
uccix_instruct_191224_lr1e-5/checkpoint-780/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ReliableAI/UCCIX-Llama2-13B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 5120,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 13824,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 40,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.46.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 35483
|
30 |
+
}
|
uccix_instruct_191224_lr1e-5/checkpoint-780/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.46.3"
|
10 |
+
}
|
uccix_instruct_191224_lr1e-5/checkpoint-780/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step780
|
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94965cf498cb0f139ec3e2dba2a39a5783dcb09b7e8c3f92a268db18c7a5e70f
|
3 |
+
size 4961502800
|
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dae0127fe777d3dda1e7b996bf7a8f989ef5e1341813449c1bc17a1731b5218
|
3 |
+
size 4970422232
|
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ff6d509711cc88ba6760fcde5f2356ec328e340d069ccf53a8f2c3912de3091
|
3 |
+
size 4881272584
|
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88177016a275975476dccde391c6e4c6a40fc135b40b7c3be507f3765b0b7005
|
3 |
+
size 4933722216
|
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5c1c2740a0eb1dbdf876fd161dbe9a49f9d7eee88898792421b3b5abbb9cedc
|
3 |
+
size 4933722208
|
uccix_instruct_191224_lr1e-5/checkpoint-780/model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58734ae52c39ae93621ff4ad05a156ab41c86a6ce2d8bed2b9d6a1200110e27e
|
3 |
+
size 1422460712
|
uccix_instruct_191224_lr1e-5/checkpoint-780/model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26103060480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
369 |
+
}
|
370 |
+
}
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00dfeb21ba336403a7e72c8f77c9778a257aad0edee2feae2d340cf03caca787
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50465e9d75c92e96fd7519f629c79aead5d2cc9b6088eee8fa9736b132e587d6
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cf4c7fbb993fef05bd7f7fb8a7f87bad0c0e0da1bbeb38e720877b83d2e86b4
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fdab190afc0f03dae6afda58a9cbb58b2316be270b8410333bd454c4545a72e
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:011bd910deb7f0f8d5392fefc20e75941dfb3224ef0ddddf1618e98d9f28760d
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab705de1b950b842a5f0ddeed8c2e279a4e5f557eaa09d848925c1c5af78a2cf
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03e7ca626152124bd7340d340c0be0769a6a733a8a52b8861de45b114fdb043a
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77b33bae6d2188390ebc6dfdd276a1f09b13f49680aa59e33f8ab221e3b919bd
|
3 |
+
size 15984
|
uccix_instruct_191224_lr1e-5/checkpoint-780/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46f217040728795cee3845514c2663ea7abe3dcb3034ff5b61525c8b41f46289
|
3 |
+
size 1064
|
uccix_instruct_191224_lr1e-5/checkpoint-780/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
|
3 |
+
size 558602
|
uccix_instruct_191224_lr1e-5/checkpoint-780/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
uccix_instruct_191224_lr1e-5/checkpoint-780/trainer_state.json
ADDED
@@ -0,0 +1,2770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 5.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 780,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.00641025641025641,
|
13 |
+
"grad_norm": 3.8148568052575884,
|
14 |
+
"learning_rate": 1.282051282051282e-07,
|
15 |
+
"loss": 4.889,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01282051282051282,
|
20 |
+
"grad_norm": 4.453444589892027,
|
21 |
+
"learning_rate": 2.564102564102564e-07,
|
22 |
+
"loss": 4.9097,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.02564102564102564,
|
27 |
+
"grad_norm": 4.896614258621833,
|
28 |
+
"learning_rate": 5.128205128205128e-07,
|
29 |
+
"loss": 4.9099,
|
30 |
+
"step": 4
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.038461538461538464,
|
34 |
+
"grad_norm": 4.456576485464451,
|
35 |
+
"learning_rate": 7.692307692307694e-07,
|
36 |
+
"loss": 4.9102,
|
37 |
+
"step": 6
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.05128205128205128,
|
41 |
+
"grad_norm": 4.193427815120892,
|
42 |
+
"learning_rate": 1.0256410256410257e-06,
|
43 |
+
"loss": 4.8924,
|
44 |
+
"step": 8
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0641025641025641,
|
48 |
+
"grad_norm": 3.6726747534666555,
|
49 |
+
"learning_rate": 1.282051282051282e-06,
|
50 |
+
"loss": 4.8372,
|
51 |
+
"step": 10
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07692307692307693,
|
55 |
+
"grad_norm": 3.337981680961211,
|
56 |
+
"learning_rate": 1.5384615384615387e-06,
|
57 |
+
"loss": 4.7794,
|
58 |
+
"step": 12
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.08974358974358974,
|
62 |
+
"grad_norm": 2.675890453922504,
|
63 |
+
"learning_rate": 1.794871794871795e-06,
|
64 |
+
"loss": 4.6191,
|
65 |
+
"step": 14
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.10256410256410256,
|
69 |
+
"grad_norm": 2.398848700299253,
|
70 |
+
"learning_rate": 2.0512820512820513e-06,
|
71 |
+
"loss": 4.5723,
|
72 |
+
"step": 16
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.11538461538461539,
|
76 |
+
"grad_norm": 1.8159784961859098,
|
77 |
+
"learning_rate": 2.307692307692308e-06,
|
78 |
+
"loss": 4.3568,
|
79 |
+
"step": 18
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1282051282051282,
|
83 |
+
"grad_norm": 1.6094220673057946,
|
84 |
+
"learning_rate": 2.564102564102564e-06,
|
85 |
+
"loss": 4.2686,
|
86 |
+
"step": 20
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.14102564102564102,
|
90 |
+
"grad_norm": 1.4349818434671497,
|
91 |
+
"learning_rate": 2.8205128205128207e-06,
|
92 |
+
"loss": 4.169,
|
93 |
+
"step": 22
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.15384615384615385,
|
97 |
+
"grad_norm": 1.4412559958198408,
|
98 |
+
"learning_rate": 3.0769230769230774e-06,
|
99 |
+
"loss": 4.0415,
|
100 |
+
"step": 24
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.16666666666666666,
|
104 |
+
"grad_norm": 1.3626982007755366,
|
105 |
+
"learning_rate": 3.3333333333333333e-06,
|
106 |
+
"loss": 3.8569,
|
107 |
+
"step": 26
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.1794871794871795,
|
111 |
+
"grad_norm": 1.3679096739652512,
|
112 |
+
"learning_rate": 3.58974358974359e-06,
|
113 |
+
"loss": 3.7409,
|
114 |
+
"step": 28
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.19230769230769232,
|
118 |
+
"grad_norm": 1.3396391976584703,
|
119 |
+
"learning_rate": 3.846153846153847e-06,
|
120 |
+
"loss": 3.6585,
|
121 |
+
"step": 30
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.20512820512820512,
|
125 |
+
"grad_norm": 1.294876480457606,
|
126 |
+
"learning_rate": 4.102564102564103e-06,
|
127 |
+
"loss": 3.4961,
|
128 |
+
"step": 32
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.21794871794871795,
|
132 |
+
"grad_norm": 1.103820056614455,
|
133 |
+
"learning_rate": 4.358974358974359e-06,
|
134 |
+
"loss": 3.3518,
|
135 |
+
"step": 34
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.23076923076923078,
|
139 |
+
"grad_norm": 1.0522131115906572,
|
140 |
+
"learning_rate": 4.615384615384616e-06,
|
141 |
+
"loss": 3.1984,
|
142 |
+
"step": 36
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.24358974358974358,
|
146 |
+
"grad_norm": 1.0081732884085817,
|
147 |
+
"learning_rate": 4.871794871794872e-06,
|
148 |
+
"loss": 3.054,
|
149 |
+
"step": 38
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.2564102564102564,
|
153 |
+
"grad_norm": 0.9214039999549644,
|
154 |
+
"learning_rate": 5.128205128205128e-06,
|
155 |
+
"loss": 2.8628,
|
156 |
+
"step": 40
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.2692307692307692,
|
160 |
+
"grad_norm": 0.8143994876297143,
|
161 |
+
"learning_rate": 5.384615384615385e-06,
|
162 |
+
"loss": 2.7475,
|
163 |
+
"step": 42
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.28205128205128205,
|
167 |
+
"grad_norm": 0.700891765547207,
|
168 |
+
"learning_rate": 5.641025641025641e-06,
|
169 |
+
"loss": 2.5869,
|
170 |
+
"step": 44
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2948717948717949,
|
174 |
+
"grad_norm": 0.7510674065754775,
|
175 |
+
"learning_rate": 5.897435897435898e-06,
|
176 |
+
"loss": 2.4461,
|
177 |
+
"step": 46
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.3076923076923077,
|
181 |
+
"grad_norm": 0.6794074940373539,
|
182 |
+
"learning_rate": 6.153846153846155e-06,
|
183 |
+
"loss": 2.3477,
|
184 |
+
"step": 48
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.32051282051282054,
|
188 |
+
"grad_norm": 0.5162215042692575,
|
189 |
+
"learning_rate": 6.410256410256412e-06,
|
190 |
+
"loss": 2.2152,
|
191 |
+
"step": 50
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.3333333333333333,
|
195 |
+
"grad_norm": 0.5146975027904754,
|
196 |
+
"learning_rate": 6.666666666666667e-06,
|
197 |
+
"loss": 2.1975,
|
198 |
+
"step": 52
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.34615384615384615,
|
202 |
+
"grad_norm": 0.4474574545979082,
|
203 |
+
"learning_rate": 6.923076923076923e-06,
|
204 |
+
"loss": 2.0824,
|
205 |
+
"step": 54
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.358974358974359,
|
209 |
+
"grad_norm": 0.40379510918119965,
|
210 |
+
"learning_rate": 7.17948717948718e-06,
|
211 |
+
"loss": 2.0388,
|
212 |
+
"step": 56
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.3717948717948718,
|
216 |
+
"grad_norm": 0.4109144194248555,
|
217 |
+
"learning_rate": 7.435897435897437e-06,
|
218 |
+
"loss": 1.9699,
|
219 |
+
"step": 58
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.38461538461538464,
|
223 |
+
"grad_norm": 0.36878556755849573,
|
224 |
+
"learning_rate": 7.692307692307694e-06,
|
225 |
+
"loss": 1.9252,
|
226 |
+
"step": 60
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.3974358974358974,
|
230 |
+
"grad_norm": 0.33951214974325605,
|
231 |
+
"learning_rate": 7.948717948717949e-06,
|
232 |
+
"loss": 1.8773,
|
233 |
+
"step": 62
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.41025641025641024,
|
237 |
+
"grad_norm": 0.31625266306424027,
|
238 |
+
"learning_rate": 8.205128205128205e-06,
|
239 |
+
"loss": 1.7966,
|
240 |
+
"step": 64
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.4230769230769231,
|
244 |
+
"grad_norm": 0.7180890498799148,
|
245 |
+
"learning_rate": 8.461538461538462e-06,
|
246 |
+
"loss": 1.8108,
|
247 |
+
"step": 66
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.4358974358974359,
|
251 |
+
"grad_norm": 0.33704662479371716,
|
252 |
+
"learning_rate": 8.717948717948719e-06,
|
253 |
+
"loss": 1.7498,
|
254 |
+
"step": 68
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.44871794871794873,
|
258 |
+
"grad_norm": 0.2761824271642518,
|
259 |
+
"learning_rate": 8.974358974358976e-06,
|
260 |
+
"loss": 1.7124,
|
261 |
+
"step": 70
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.46153846153846156,
|
265 |
+
"grad_norm": 0.24386286193528572,
|
266 |
+
"learning_rate": 9.230769230769232e-06,
|
267 |
+
"loss": 1.6382,
|
268 |
+
"step": 72
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.47435897435897434,
|
272 |
+
"grad_norm": 0.25885451676676363,
|
273 |
+
"learning_rate": 9.487179487179487e-06,
|
274 |
+
"loss": 1.6588,
|
275 |
+
"step": 74
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.48717948717948717,
|
279 |
+
"grad_norm": 0.3040030663690383,
|
280 |
+
"learning_rate": 9.743589743589744e-06,
|
281 |
+
"loss": 1.6209,
|
282 |
+
"step": 76
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.5,
|
286 |
+
"grad_norm": 0.26598080566137733,
|
287 |
+
"learning_rate": 1e-05,
|
288 |
+
"loss": 1.6294,
|
289 |
+
"step": 78
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.5128205128205128,
|
293 |
+
"grad_norm": 0.22696288673824674,
|
294 |
+
"learning_rate": 9.99995506314361e-06,
|
295 |
+
"loss": 1.58,
|
296 |
+
"step": 80
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.5256410256410257,
|
300 |
+
"grad_norm": 0.21242259411358655,
|
301 |
+
"learning_rate": 9.99982025338217e-06,
|
302 |
+
"loss": 1.5439,
|
303 |
+
"step": 82
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.5384615384615384,
|
307 |
+
"grad_norm": 0.20291826899403465,
|
308 |
+
"learning_rate": 9.999595573138845e-06,
|
309 |
+
"loss": 1.5274,
|
310 |
+
"step": 84
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.5512820512820513,
|
314 |
+
"grad_norm": 0.1855444412322797,
|
315 |
+
"learning_rate": 9.99928102645221e-06,
|
316 |
+
"loss": 1.5161,
|
317 |
+
"step": 86
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.5641025641025641,
|
321 |
+
"grad_norm": 0.17883874148398324,
|
322 |
+
"learning_rate": 9.99887661897616e-06,
|
323 |
+
"loss": 1.4916,
|
324 |
+
"step": 88
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.5769230769230769,
|
328 |
+
"grad_norm": 0.17041478792908024,
|
329 |
+
"learning_rate": 9.99838235797981e-06,
|
330 |
+
"loss": 1.4679,
|
331 |
+
"step": 90
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.5897435897435898,
|
335 |
+
"grad_norm": 0.1904762198987749,
|
336 |
+
"learning_rate": 9.997798252347382e-06,
|
337 |
+
"loss": 1.471,
|
338 |
+
"step": 92
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.6025641025641025,
|
342 |
+
"grad_norm": 0.19077041355708335,
|
343 |
+
"learning_rate": 9.99712431257802e-06,
|
344 |
+
"loss": 1.4672,
|
345 |
+
"step": 94
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.6153846153846154,
|
349 |
+
"grad_norm": 0.1702104328191874,
|
350 |
+
"learning_rate": 9.996360550785619e-06,
|
351 |
+
"loss": 1.4455,
|
352 |
+
"step": 96
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.6282051282051282,
|
356 |
+
"grad_norm": 0.19039133859515542,
|
357 |
+
"learning_rate": 9.9955069806986e-06,
|
358 |
+
"loss": 1.4727,
|
359 |
+
"step": 98
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.6410256410256411,
|
363 |
+
"grad_norm": 0.15448238517128507,
|
364 |
+
"learning_rate": 9.994563617659665e-06,
|
365 |
+
"loss": 1.4257,
|
366 |
+
"step": 100
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.6538461538461539,
|
370 |
+
"grad_norm": 0.15202351051018634,
|
371 |
+
"learning_rate": 9.993530478625524e-06,
|
372 |
+
"loss": 1.4214,
|
373 |
+
"step": 102
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.6666666666666666,
|
377 |
+
"grad_norm": 0.16296598133044526,
|
378 |
+
"learning_rate": 9.992407582166582e-06,
|
379 |
+
"loss": 1.4213,
|
380 |
+
"step": 104
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.6794871794871795,
|
384 |
+
"grad_norm": 0.1462038294164801,
|
385 |
+
"learning_rate": 9.991194948466615e-06,
|
386 |
+
"loss": 1.3993,
|
387 |
+
"step": 106
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.6923076923076923,
|
391 |
+
"grad_norm": 0.14470989191451086,
|
392 |
+
"learning_rate": 9.989892599322404e-06,
|
393 |
+
"loss": 1.4014,
|
394 |
+
"step": 108
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.7051282051282052,
|
398 |
+
"grad_norm": 0.15440545758233384,
|
399 |
+
"learning_rate": 9.988500558143337e-06,
|
400 |
+
"loss": 1.3878,
|
401 |
+
"step": 110
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.717948717948718,
|
405 |
+
"grad_norm": 0.1412948019214843,
|
406 |
+
"learning_rate": 9.987018849950996e-06,
|
407 |
+
"loss": 1.355,
|
408 |
+
"step": 112
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.7307692307692307,
|
412 |
+
"grad_norm": 0.15156074653795895,
|
413 |
+
"learning_rate": 9.985447501378706e-06,
|
414 |
+
"loss": 1.3642,
|
415 |
+
"step": 114
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.7435897435897436,
|
419 |
+
"grad_norm": 0.3875845143038168,
|
420 |
+
"learning_rate": 9.983786540671052e-06,
|
421 |
+
"loss": 1.3797,
|
422 |
+
"step": 116
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.7564102564102564,
|
426 |
+
"grad_norm": 0.15788537547887518,
|
427 |
+
"learning_rate": 9.982035997683372e-06,
|
428 |
+
"loss": 1.3388,
|
429 |
+
"step": 118
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.7692307692307693,
|
433 |
+
"grad_norm": 0.15056320914445512,
|
434 |
+
"learning_rate": 9.980195903881231e-06,
|
435 |
+
"loss": 1.343,
|
436 |
+
"step": 120
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.782051282051282,
|
440 |
+
"grad_norm": 0.1555129283317706,
|
441 |
+
"learning_rate": 9.978266292339838e-06,
|
442 |
+
"loss": 1.328,
|
443 |
+
"step": 122
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.7948717948717948,
|
447 |
+
"grad_norm": 0.14999182496915453,
|
448 |
+
"learning_rate": 9.976247197743465e-06,
|
449 |
+
"loss": 1.352,
|
450 |
+
"step": 124
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.8076923076923077,
|
454 |
+
"grad_norm": 0.14124313426191026,
|
455 |
+
"learning_rate": 9.974138656384815e-06,
|
456 |
+
"loss": 1.3243,
|
457 |
+
"step": 126
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.8205128205128205,
|
461 |
+
"grad_norm": 0.1378326204862212,
|
462 |
+
"learning_rate": 9.97194070616438e-06,
|
463 |
+
"loss": 1.3241,
|
464 |
+
"step": 128
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.8333333333333334,
|
468 |
+
"grad_norm": 0.14227960534974604,
|
469 |
+
"learning_rate": 9.969653386589749e-06,
|
470 |
+
"loss": 1.3219,
|
471 |
+
"step": 130
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.8461538461538461,
|
475 |
+
"grad_norm": 0.12713543749272155,
|
476 |
+
"learning_rate": 9.967276738774897e-06,
|
477 |
+
"loss": 1.3096,
|
478 |
+
"step": 132
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.8589743589743589,
|
482 |
+
"grad_norm": 0.15061232362563903,
|
483 |
+
"learning_rate": 9.964810805439464e-06,
|
484 |
+
"loss": 1.3011,
|
485 |
+
"step": 134
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.8717948717948718,
|
489 |
+
"grad_norm": 0.14361563348990292,
|
490 |
+
"learning_rate": 9.962255630907964e-06,
|
491 |
+
"loss": 1.2827,
|
492 |
+
"step": 136
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.8846153846153846,
|
496 |
+
"grad_norm": 0.17754387209035652,
|
497 |
+
"learning_rate": 9.959611261108999e-06,
|
498 |
+
"loss": 1.3185,
|
499 |
+
"step": 138
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.8974358974358975,
|
503 |
+
"grad_norm": 0.1458623897430443,
|
504 |
+
"learning_rate": 9.956877743574437e-06,
|
505 |
+
"loss": 1.3286,
|
506 |
+
"step": 140
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.9102564102564102,
|
510 |
+
"grad_norm": 0.14084398418567437,
|
511 |
+
"learning_rate": 9.954055127438554e-06,
|
512 |
+
"loss": 1.3005,
|
513 |
+
"step": 142
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.9230769230769231,
|
517 |
+
"grad_norm": 0.13580861113069753,
|
518 |
+
"learning_rate": 9.951143463437145e-06,
|
519 |
+
"loss": 1.3165,
|
520 |
+
"step": 144
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.9358974358974359,
|
524 |
+
"grad_norm": 0.13622051889734035,
|
525 |
+
"learning_rate": 9.948142803906623e-06,
|
526 |
+
"loss": 1.2929,
|
527 |
+
"step": 146
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.9487179487179487,
|
531 |
+
"grad_norm": 0.12679082371935066,
|
532 |
+
"learning_rate": 9.94505320278307e-06,
|
533 |
+
"loss": 1.2833,
|
534 |
+
"step": 148
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.9615384615384616,
|
538 |
+
"grad_norm": 0.11939382079952243,
|
539 |
+
"learning_rate": 9.94187471560127e-06,
|
540 |
+
"loss": 1.2851,
|
541 |
+
"step": 150
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.9743589743589743,
|
545 |
+
"grad_norm": 0.11752490134274678,
|
546 |
+
"learning_rate": 9.938607399493714e-06,
|
547 |
+
"loss": 1.2559,
|
548 |
+
"step": 152
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.9871794871794872,
|
552 |
+
"grad_norm": 0.11807212671773365,
|
553 |
+
"learning_rate": 9.935251313189564e-06,
|
554 |
+
"loss": 1.285,
|
555 |
+
"step": 154
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.0,
|
559 |
+
"grad_norm": 0.1120761333795772,
|
560 |
+
"learning_rate": 9.931806517013612e-06,
|
561 |
+
"loss": 1.2491,
|
562 |
+
"step": 156
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.0128205128205128,
|
566 |
+
"grad_norm": 0.10750345822189263,
|
567 |
+
"learning_rate": 9.92827307288518e-06,
|
568 |
+
"loss": 1.2442,
|
569 |
+
"step": 158
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.0256410256410255,
|
573 |
+
"grad_norm": 0.10918642022881683,
|
574 |
+
"learning_rate": 9.924651044317017e-06,
|
575 |
+
"loss": 1.2286,
|
576 |
+
"step": 160
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.0384615384615385,
|
580 |
+
"grad_norm": 0.11225330042691335,
|
581 |
+
"learning_rate": 9.920940496414153e-06,
|
582 |
+
"loss": 1.2158,
|
583 |
+
"step": 162
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.0512820512820513,
|
587 |
+
"grad_norm": 0.11366482652198566,
|
588 |
+
"learning_rate": 9.917141495872733e-06,
|
589 |
+
"loss": 1.2074,
|
590 |
+
"step": 164
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.064102564102564,
|
594 |
+
"grad_norm": 0.12295651003296312,
|
595 |
+
"learning_rate": 9.913254110978812e-06,
|
596 |
+
"loss": 1.2003,
|
597 |
+
"step": 166
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.0769230769230769,
|
601 |
+
"grad_norm": 0.1144456030840293,
|
602 |
+
"learning_rate": 9.909278411607134e-06,
|
603 |
+
"loss": 1.206,
|
604 |
+
"step": 168
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.0897435897435896,
|
608 |
+
"grad_norm": 0.2468334129961725,
|
609 |
+
"learning_rate": 9.90521446921987e-06,
|
610 |
+
"loss": 1.2235,
|
611 |
+
"step": 170
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.1025641025641026,
|
615 |
+
"grad_norm": 0.127278158070263,
|
616 |
+
"learning_rate": 9.90106235686534e-06,
|
617 |
+
"loss": 1.1928,
|
618 |
+
"step": 172
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.1153846153846154,
|
622 |
+
"grad_norm": 0.1280282060730887,
|
623 |
+
"learning_rate": 9.896822149176695e-06,
|
624 |
+
"loss": 1.2068,
|
625 |
+
"step": 174
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.1282051282051282,
|
629 |
+
"grad_norm": 0.1142922422404122,
|
630 |
+
"learning_rate": 9.892493922370575e-06,
|
631 |
+
"loss": 1.217,
|
632 |
+
"step": 176
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.141025641025641,
|
636 |
+
"grad_norm": 0.17470470224878323,
|
637 |
+
"learning_rate": 9.888077754245741e-06,
|
638 |
+
"loss": 1.2099,
|
639 |
+
"step": 178
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.1538461538461537,
|
643 |
+
"grad_norm": 0.10477882692325258,
|
644 |
+
"learning_rate": 9.883573724181683e-06,
|
645 |
+
"loss": 1.1944,
|
646 |
+
"step": 180
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.1666666666666667,
|
650 |
+
"grad_norm": 0.114790034377695,
|
651 |
+
"learning_rate": 9.878981913137178e-06,
|
652 |
+
"loss": 1.172,
|
653 |
+
"step": 182
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.1794871794871795,
|
657 |
+
"grad_norm": 0.1044922535107306,
|
658 |
+
"learning_rate": 9.87430240364885e-06,
|
659 |
+
"loss": 1.2147,
|
660 |
+
"step": 184
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.1923076923076923,
|
664 |
+
"grad_norm": 0.09771283060341285,
|
665 |
+
"learning_rate": 9.869535279829674e-06,
|
666 |
+
"loss": 1.173,
|
667 |
+
"step": 186
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.205128205128205,
|
671 |
+
"grad_norm": 0.1013995999635824,
|
672 |
+
"learning_rate": 9.864680627367476e-06,
|
673 |
+
"loss": 1.2023,
|
674 |
+
"step": 188
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.217948717948718,
|
678 |
+
"grad_norm": 0.10273326452887067,
|
679 |
+
"learning_rate": 9.859738533523384e-06,
|
680 |
+
"loss": 1.1732,
|
681 |
+
"step": 190
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.2307692307692308,
|
685 |
+
"grad_norm": 0.09684048616936082,
|
686 |
+
"learning_rate": 9.854709087130261e-06,
|
687 |
+
"loss": 1.1952,
|
688 |
+
"step": 192
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.2435897435897436,
|
692 |
+
"grad_norm": 0.10827760658070901,
|
693 |
+
"learning_rate": 9.849592378591113e-06,
|
694 |
+
"loss": 1.1864,
|
695 |
+
"step": 194
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.2564102564102564,
|
699 |
+
"grad_norm": 0.09989527940011267,
|
700 |
+
"learning_rate": 9.844388499877457e-06,
|
701 |
+
"loss": 1.2016,
|
702 |
+
"step": 196
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.2692307692307692,
|
706 |
+
"grad_norm": 0.09930771667309381,
|
707 |
+
"learning_rate": 9.839097544527674e-06,
|
708 |
+
"loss": 1.1738,
|
709 |
+
"step": 198
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.282051282051282,
|
713 |
+
"grad_norm": 0.1032001919164007,
|
714 |
+
"learning_rate": 9.833719607645325e-06,
|
715 |
+
"loss": 1.176,
|
716 |
+
"step": 200
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.294871794871795,
|
720 |
+
"grad_norm": 0.09859412157061716,
|
721 |
+
"learning_rate": 9.82825478589744e-06,
|
722 |
+
"loss": 1.1682,
|
723 |
+
"step": 202
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.3076923076923077,
|
727 |
+
"grad_norm": 0.09558235334437347,
|
728 |
+
"learning_rate": 9.822703177512783e-06,
|
729 |
+
"loss": 1.181,
|
730 |
+
"step": 204
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.3205128205128205,
|
734 |
+
"grad_norm": 0.08733478657745303,
|
735 |
+
"learning_rate": 9.817064882280085e-06,
|
736 |
+
"loss": 1.1686,
|
737 |
+
"step": 206
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.3333333333333333,
|
741 |
+
"grad_norm": 0.09397505343456257,
|
742 |
+
"learning_rate": 9.811340001546252e-06,
|
743 |
+
"loss": 1.1778,
|
744 |
+
"step": 208
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.3461538461538463,
|
748 |
+
"grad_norm": 0.09590407825516856,
|
749 |
+
"learning_rate": 9.805528638214543e-06,
|
750 |
+
"loss": 1.1542,
|
751 |
+
"step": 210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.358974358974359,
|
755 |
+
"grad_norm": 0.0912508440064145,
|
756 |
+
"learning_rate": 9.799630896742716e-06,
|
757 |
+
"loss": 1.1643,
|
758 |
+
"step": 212
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.3717948717948718,
|
762 |
+
"grad_norm": 0.09258955107744923,
|
763 |
+
"learning_rate": 9.793646883141155e-06,
|
764 |
+
"loss": 1.1686,
|
765 |
+
"step": 214
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.3846153846153846,
|
769 |
+
"grad_norm": 0.09889457149777804,
|
770 |
+
"learning_rate": 9.787576704970965e-06,
|
771 |
+
"loss": 1.1677,
|
772 |
+
"step": 216
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.3974358974358974,
|
776 |
+
"grad_norm": 0.09374670756166416,
|
777 |
+
"learning_rate": 9.781420471342035e-06,
|
778 |
+
"loss": 1.146,
|
779 |
+
"step": 218
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.4102564102564101,
|
783 |
+
"grad_norm": 0.09136677460744856,
|
784 |
+
"learning_rate": 9.77517829291108e-06,
|
785 |
+
"loss": 1.1594,
|
786 |
+
"step": 220
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.4230769230769231,
|
790 |
+
"grad_norm": 0.10584946030378292,
|
791 |
+
"learning_rate": 9.768850281879651e-06,
|
792 |
+
"loss": 1.1865,
|
793 |
+
"step": 222
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.435897435897436,
|
797 |
+
"grad_norm": 0.09187981607301214,
|
798 |
+
"learning_rate": 9.762436551992117e-06,
|
799 |
+
"loss": 1.1606,
|
800 |
+
"step": 224
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.4487179487179487,
|
804 |
+
"grad_norm": 0.09880449655805854,
|
805 |
+
"learning_rate": 9.755937218533622e-06,
|
806 |
+
"loss": 1.1586,
|
807 |
+
"step": 226
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.4615384615384617,
|
811 |
+
"grad_norm": 0.08704607108972029,
|
812 |
+
"learning_rate": 9.74935239832801e-06,
|
813 |
+
"loss": 1.1746,
|
814 |
+
"step": 228
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.4743589743589745,
|
818 |
+
"grad_norm": 0.08909112778091671,
|
819 |
+
"learning_rate": 9.742682209735727e-06,
|
820 |
+
"loss": 1.1575,
|
821 |
+
"step": 230
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.4871794871794872,
|
825 |
+
"grad_norm": 0.09035998053799675,
|
826 |
+
"learning_rate": 9.735926772651703e-06,
|
827 |
+
"loss": 1.1678,
|
828 |
+
"step": 232
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.5,
|
832 |
+
"grad_norm": 0.09500864788295198,
|
833 |
+
"learning_rate": 9.729086208503174e-06,
|
834 |
+
"loss": 1.1466,
|
835 |
+
"step": 234
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.5128205128205128,
|
839 |
+
"grad_norm": 0.09247434213683463,
|
840 |
+
"learning_rate": 9.722160640247523e-06,
|
841 |
+
"loss": 1.1687,
|
842 |
+
"step": 236
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.5256410256410255,
|
846 |
+
"grad_norm": 0.09322212100100113,
|
847 |
+
"learning_rate": 9.715150192370054e-06,
|
848 |
+
"loss": 1.1376,
|
849 |
+
"step": 238
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.5384615384615383,
|
853 |
+
"grad_norm": 0.08824919508271642,
|
854 |
+
"learning_rate": 9.708054990881763e-06,
|
855 |
+
"loss": 1.1523,
|
856 |
+
"step": 240
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.5512820512820513,
|
860 |
+
"grad_norm": 0.25559730635424294,
|
861 |
+
"learning_rate": 9.700875163317072e-06,
|
862 |
+
"loss": 1.1488,
|
863 |
+
"step": 242
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.564102564102564,
|
867 |
+
"grad_norm": 0.2487505162861363,
|
868 |
+
"learning_rate": 9.693610838731532e-06,
|
869 |
+
"loss": 1.1481,
|
870 |
+
"step": 244
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.5769230769230769,
|
874 |
+
"grad_norm": 0.12151469789600829,
|
875 |
+
"learning_rate": 9.686262147699507e-06,
|
876 |
+
"loss": 1.1483,
|
877 |
+
"step": 246
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.5897435897435899,
|
881 |
+
"grad_norm": 0.10407519891252137,
|
882 |
+
"learning_rate": 9.678829222311827e-06,
|
883 |
+
"loss": 1.13,
|
884 |
+
"step": 248
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.6025641025641026,
|
888 |
+
"grad_norm": 0.11236395690738615,
|
889 |
+
"learning_rate": 9.671312196173413e-06,
|
890 |
+
"loss": 1.1493,
|
891 |
+
"step": 250
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.6153846153846154,
|
895 |
+
"grad_norm": 0.1012523372817843,
|
896 |
+
"learning_rate": 9.663711204400872e-06,
|
897 |
+
"loss": 1.148,
|
898 |
+
"step": 252
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.6282051282051282,
|
902 |
+
"grad_norm": 0.09652583778417714,
|
903 |
+
"learning_rate": 9.656026383620076e-06,
|
904 |
+
"loss": 1.1074,
|
905 |
+
"step": 254
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.641025641025641,
|
909 |
+
"grad_norm": 0.09448533541138639,
|
910 |
+
"learning_rate": 9.6482578719637e-06,
|
911 |
+
"loss": 1.1486,
|
912 |
+
"step": 256
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.6538461538461537,
|
916 |
+
"grad_norm": 0.09453430664055591,
|
917 |
+
"learning_rate": 9.640405809068743e-06,
|
918 |
+
"loss": 1.1197,
|
919 |
+
"step": 258
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.6666666666666665,
|
923 |
+
"grad_norm": 0.0952812616531032,
|
924 |
+
"learning_rate": 9.632470336074009e-06,
|
925 |
+
"loss": 1.1337,
|
926 |
+
"step": 260
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.6794871794871795,
|
930 |
+
"grad_norm": 0.09048018082770859,
|
931 |
+
"learning_rate": 9.624451595617588e-06,
|
932 |
+
"loss": 1.0885,
|
933 |
+
"step": 262
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.6923076923076923,
|
937 |
+
"grad_norm": 0.0922717302732401,
|
938 |
+
"learning_rate": 9.616349731834271e-06,
|
939 |
+
"loss": 1.1294,
|
940 |
+
"step": 264
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.7051282051282053,
|
944 |
+
"grad_norm": 0.09113342238000427,
|
945 |
+
"learning_rate": 9.608164890352977e-06,
|
946 |
+
"loss": 1.0871,
|
947 |
+
"step": 266
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.717948717948718,
|
951 |
+
"grad_norm": 0.10188653395954697,
|
952 |
+
"learning_rate": 9.599897218294122e-06,
|
953 |
+
"loss": 1.1237,
|
954 |
+
"step": 268
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.7307692307692308,
|
958 |
+
"grad_norm": 0.08946291041522332,
|
959 |
+
"learning_rate": 9.591546864266983e-06,
|
960 |
+
"loss": 1.1129,
|
961 |
+
"step": 270
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.7435897435897436,
|
965 |
+
"grad_norm": 0.092702242157672,
|
966 |
+
"learning_rate": 9.583113978367026e-06,
|
967 |
+
"loss": 1.1089,
|
968 |
+
"step": 272
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.7564102564102564,
|
972 |
+
"grad_norm": 0.1140491779513373,
|
973 |
+
"learning_rate": 9.574598712173202e-06,
|
974 |
+
"loss": 1.1286,
|
975 |
+
"step": 274
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.7692307692307692,
|
979 |
+
"grad_norm": 0.09516237353719291,
|
980 |
+
"learning_rate": 9.56600121874523e-06,
|
981 |
+
"loss": 1.1122,
|
982 |
+
"step": 276
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.782051282051282,
|
986 |
+
"grad_norm": 0.08916708413619781,
|
987 |
+
"learning_rate": 9.557321652620839e-06,
|
988 |
+
"loss": 1.1048,
|
989 |
+
"step": 278
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.7948717948717947,
|
993 |
+
"grad_norm": 0.09140805156925046,
|
994 |
+
"learning_rate": 9.548560169812997e-06,
|
995 |
+
"loss": 1.1058,
|
996 |
+
"step": 280
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.8076923076923077,
|
1000 |
+
"grad_norm": 0.08683635001330178,
|
1001 |
+
"learning_rate": 9.539716927807102e-06,
|
1002 |
+
"loss": 1.0925,
|
1003 |
+
"step": 282
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.8205128205128205,
|
1007 |
+
"grad_norm": 0.09284148179598711,
|
1008 |
+
"learning_rate": 9.530792085558151e-06,
|
1009 |
+
"loss": 1.0948,
|
1010 |
+
"step": 284
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.8333333333333335,
|
1014 |
+
"grad_norm": 0.08800610945553744,
|
1015 |
+
"learning_rate": 9.521785803487888e-06,
|
1016 |
+
"loss": 1.1116,
|
1017 |
+
"step": 286
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.8461538461538463,
|
1021 |
+
"grad_norm": 0.08758546749473674,
|
1022 |
+
"learning_rate": 9.512698243481914e-06,
|
1023 |
+
"loss": 1.1059,
|
1024 |
+
"step": 288
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.858974358974359,
|
1028 |
+
"grad_norm": 0.08336608124209365,
|
1029 |
+
"learning_rate": 9.50352956888678e-06,
|
1030 |
+
"loss": 1.1015,
|
1031 |
+
"step": 290
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.8717948717948718,
|
1035 |
+
"grad_norm": 0.09199580396288136,
|
1036 |
+
"learning_rate": 9.49427994450705e-06,
|
1037 |
+
"loss": 1.0828,
|
1038 |
+
"step": 292
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.8846153846153846,
|
1042 |
+
"grad_norm": 0.5410940704298627,
|
1043 |
+
"learning_rate": 9.484949536602343e-06,
|
1044 |
+
"loss": 1.1412,
|
1045 |
+
"step": 294
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.8974358974358974,
|
1049 |
+
"grad_norm": 0.08913430120295451,
|
1050 |
+
"learning_rate": 9.47553851288434e-06,
|
1051 |
+
"loss": 1.1073,
|
1052 |
+
"step": 296
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.9102564102564101,
|
1056 |
+
"grad_norm": 0.09420167495815907,
|
1057 |
+
"learning_rate": 9.466047042513767e-06,
|
1058 |
+
"loss": 1.0957,
|
1059 |
+
"step": 298
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.9230769230769231,
|
1063 |
+
"grad_norm": 0.08189970955203785,
|
1064 |
+
"learning_rate": 9.45647529609736e-06,
|
1065 |
+
"loss": 1.0909,
|
1066 |
+
"step": 300
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.935897435897436,
|
1070 |
+
"grad_norm": 0.09065809775757692,
|
1071 |
+
"learning_rate": 9.4468234456848e-06,
|
1072 |
+
"loss": 1.0896,
|
1073 |
+
"step": 302
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.9487179487179487,
|
1077 |
+
"grad_norm": 0.08763498764491487,
|
1078 |
+
"learning_rate": 9.437091664765611e-06,
|
1079 |
+
"loss": 1.1099,
|
1080 |
+
"step": 304
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.9615384615384617,
|
1084 |
+
"grad_norm": 0.09257403574026254,
|
1085 |
+
"learning_rate": 9.427280128266049e-06,
|
1086 |
+
"loss": 1.1236,
|
1087 |
+
"step": 306
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.9743589743589745,
|
1091 |
+
"grad_norm": 0.08983923370086075,
|
1092 |
+
"learning_rate": 9.41738901254596e-06,
|
1093 |
+
"loss": 1.0909,
|
1094 |
+
"step": 308
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.9871794871794872,
|
1098 |
+
"grad_norm": 0.086289850522152,
|
1099 |
+
"learning_rate": 9.4074184953956e-06,
|
1100 |
+
"loss": 1.0942,
|
1101 |
+
"step": 310
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 2.0,
|
1105 |
+
"grad_norm": 0.0874296283040965,
|
1106 |
+
"learning_rate": 9.397368756032445e-06,
|
1107 |
+
"loss": 1.0651,
|
1108 |
+
"step": 312
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.0128205128205128,
|
1112 |
+
"grad_norm": 0.0848953888966574,
|
1113 |
+
"learning_rate": 9.38723997509798e-06,
|
1114 |
+
"loss": 1.0569,
|
1115 |
+
"step": 314
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.0256410256410255,
|
1119 |
+
"grad_norm": 0.08790616172980993,
|
1120 |
+
"learning_rate": 9.37703233465443e-06,
|
1121 |
+
"loss": 1.035,
|
1122 |
+
"step": 316
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.0384615384615383,
|
1126 |
+
"grad_norm": 0.08376355574572536,
|
1127 |
+
"learning_rate": 9.366746018181503e-06,
|
1128 |
+
"loss": 1.0379,
|
1129 |
+
"step": 318
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.051282051282051,
|
1133 |
+
"grad_norm": 0.7353839032057593,
|
1134 |
+
"learning_rate": 9.356381210573092e-06,
|
1135 |
+
"loss": 1.0623,
|
1136 |
+
"step": 320
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.064102564102564,
|
1140 |
+
"grad_norm": 0.09158722362975955,
|
1141 |
+
"learning_rate": 9.345938098133946e-06,
|
1142 |
+
"loss": 1.0264,
|
1143 |
+
"step": 322
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.076923076923077,
|
1147 |
+
"grad_norm": 0.08819422670959466,
|
1148 |
+
"learning_rate": 9.33541686857632e-06,
|
1149 |
+
"loss": 1.0456,
|
1150 |
+
"step": 324
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.08974358974359,
|
1154 |
+
"grad_norm": 0.0905819981621342,
|
1155 |
+
"learning_rate": 9.324817711016609e-06,
|
1156 |
+
"loss": 1.0239,
|
1157 |
+
"step": 326
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.1025641025641026,
|
1161 |
+
"grad_norm": 0.08799589635983858,
|
1162 |
+
"learning_rate": 9.31414081597194e-06,
|
1163 |
+
"loss": 1.0498,
|
1164 |
+
"step": 328
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.1153846153846154,
|
1168 |
+
"grad_norm": 0.0847927160084877,
|
1169 |
+
"learning_rate": 9.303386375356752e-06,
|
1170 |
+
"loss": 1.0163,
|
1171 |
+
"step": 330
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.128205128205128,
|
1175 |
+
"grad_norm": 0.09169187613815971,
|
1176 |
+
"learning_rate": 9.292554582479349e-06,
|
1177 |
+
"loss": 1.0054,
|
1178 |
+
"step": 332
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.141025641025641,
|
1182 |
+
"grad_norm": 0.08905293788047657,
|
1183 |
+
"learning_rate": 9.281645632038417e-06,
|
1184 |
+
"loss": 1.062,
|
1185 |
+
"step": 334
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.1538461538461537,
|
1189 |
+
"grad_norm": 0.09229173633666073,
|
1190 |
+
"learning_rate": 9.270659720119533e-06,
|
1191 |
+
"loss": 1.039,
|
1192 |
+
"step": 336
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 2.1666666666666665,
|
1196 |
+
"grad_norm": 0.08430144514732368,
|
1197 |
+
"learning_rate": 9.259597044191635e-06,
|
1198 |
+
"loss": 1.0268,
|
1199 |
+
"step": 338
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 2.1794871794871793,
|
1203 |
+
"grad_norm": 0.08706427078942988,
|
1204 |
+
"learning_rate": 9.248457803103476e-06,
|
1205 |
+
"loss": 1.0038,
|
1206 |
+
"step": 340
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 2.1923076923076925,
|
1210 |
+
"grad_norm": 0.0851666955740436,
|
1211 |
+
"learning_rate": 9.237242197080045e-06,
|
1212 |
+
"loss": 1.0218,
|
1213 |
+
"step": 342
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 2.2051282051282053,
|
1217 |
+
"grad_norm": 0.08446573269728049,
|
1218 |
+
"learning_rate": 9.225950427718974e-06,
|
1219 |
+
"loss": 1.0254,
|
1220 |
+
"step": 344
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.217948717948718,
|
1224 |
+
"grad_norm": 0.08907279788471897,
|
1225 |
+
"learning_rate": 9.21458269798691e-06,
|
1226 |
+
"loss": 0.9916,
|
1227 |
+
"step": 346
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 2.230769230769231,
|
1231 |
+
"grad_norm": 0.09072043470187022,
|
1232 |
+
"learning_rate": 9.203139212215868e-06,
|
1233 |
+
"loss": 1.0103,
|
1234 |
+
"step": 348
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 2.2435897435897436,
|
1238 |
+
"grad_norm": 0.08618586552830075,
|
1239 |
+
"learning_rate": 9.191620176099559e-06,
|
1240 |
+
"loss": 0.9995,
|
1241 |
+
"step": 350
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 2.2564102564102564,
|
1245 |
+
"grad_norm": 0.09111342426909275,
|
1246 |
+
"learning_rate": 9.180025796689692e-06,
|
1247 |
+
"loss": 1.0292,
|
1248 |
+
"step": 352
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 2.269230769230769,
|
1252 |
+
"grad_norm": 0.2022564482536435,
|
1253 |
+
"learning_rate": 9.168356282392253e-06,
|
1254 |
+
"loss": 1.0226,
|
1255 |
+
"step": 354
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 2.282051282051282,
|
1259 |
+
"grad_norm": 0.1039362123101456,
|
1260 |
+
"learning_rate": 9.156611842963753e-06,
|
1261 |
+
"loss": 1.0152,
|
1262 |
+
"step": 356
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 2.2948717948717947,
|
1266 |
+
"grad_norm": 0.10035717927769394,
|
1267 |
+
"learning_rate": 9.144792689507471e-06,
|
1268 |
+
"loss": 1.0049,
|
1269 |
+
"step": 358
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.3076923076923075,
|
1273 |
+
"grad_norm": 0.08924064734394851,
|
1274 |
+
"learning_rate": 9.132899034469648e-06,
|
1275 |
+
"loss": 0.9962,
|
1276 |
+
"step": 360
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.3205128205128207,
|
1280 |
+
"grad_norm": 0.09443040073005612,
|
1281 |
+
"learning_rate": 9.120931091635669e-06,
|
1282 |
+
"loss": 0.9976,
|
1283 |
+
"step": 362
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 2.3333333333333335,
|
1287 |
+
"grad_norm": 0.09377508422363312,
|
1288 |
+
"learning_rate": 9.108889076126226e-06,
|
1289 |
+
"loss": 1.0306,
|
1290 |
+
"step": 364
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 2.3461538461538463,
|
1294 |
+
"grad_norm": 0.0895229930946655,
|
1295 |
+
"learning_rate": 9.09677320439345e-06,
|
1296 |
+
"loss": 1.0126,
|
1297 |
+
"step": 366
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 2.358974358974359,
|
1301 |
+
"grad_norm": 0.08795872722111464,
|
1302 |
+
"learning_rate": 9.084583694217012e-06,
|
1303 |
+
"loss": 0.9926,
|
1304 |
+
"step": 368
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.371794871794872,
|
1308 |
+
"grad_norm": 0.08704560136887454,
|
1309 |
+
"learning_rate": 9.072320764700223e-06,
|
1310 |
+
"loss": 0.9978,
|
1311 |
+
"step": 370
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 2.3846153846153846,
|
1315 |
+
"grad_norm": 0.0898387630341298,
|
1316 |
+
"learning_rate": 9.059984636266082e-06,
|
1317 |
+
"loss": 1.0042,
|
1318 |
+
"step": 372
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 2.3974358974358974,
|
1322 |
+
"grad_norm": 0.08357247562762515,
|
1323 |
+
"learning_rate": 9.047575530653324e-06,
|
1324 |
+
"loss": 1.0094,
|
1325 |
+
"step": 374
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 2.41025641025641,
|
1329 |
+
"grad_norm": 0.0843437057196144,
|
1330 |
+
"learning_rate": 9.035093670912424e-06,
|
1331 |
+
"loss": 0.9966,
|
1332 |
+
"step": 376
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 2.423076923076923,
|
1336 |
+
"grad_norm": 0.08357196997203281,
|
1337 |
+
"learning_rate": 9.022539281401601e-06,
|
1338 |
+
"loss": 1.0038,
|
1339 |
+
"step": 378
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 2.435897435897436,
|
1343 |
+
"grad_norm": 0.08859683961596204,
|
1344 |
+
"learning_rate": 9.009912587782772e-06,
|
1345 |
+
"loss": 1.0133,
|
1346 |
+
"step": 380
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 2.448717948717949,
|
1350 |
+
"grad_norm": 0.09024266497375917,
|
1351 |
+
"learning_rate": 8.997213817017508e-06,
|
1352 |
+
"loss": 0.9782,
|
1353 |
+
"step": 382
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 2.4615384615384617,
|
1357 |
+
"grad_norm": 0.0960929339414081,
|
1358 |
+
"learning_rate": 8.984443197362938e-06,
|
1359 |
+
"loss": 1.0013,
|
1360 |
+
"step": 384
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 2.4743589743589745,
|
1364 |
+
"grad_norm": 0.08862629313408348,
|
1365 |
+
"learning_rate": 8.971600958367668e-06,
|
1366 |
+
"loss": 1.0059,
|
1367 |
+
"step": 386
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 2.4871794871794872,
|
1371 |
+
"grad_norm": 0.09201716039902362,
|
1372 |
+
"learning_rate": 8.958687330867634e-06,
|
1373 |
+
"loss": 1.0263,
|
1374 |
+
"step": 388
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.5,
|
1378 |
+
"grad_norm": 0.08694363384662504,
|
1379 |
+
"learning_rate": 8.94570254698197e-06,
|
1380 |
+
"loss": 1.0163,
|
1381 |
+
"step": 390
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.5128205128205128,
|
1385 |
+
"grad_norm": 0.09205164914341211,
|
1386 |
+
"learning_rate": 8.932646840108818e-06,
|
1387 |
+
"loss": 0.9865,
|
1388 |
+
"step": 392
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.5256410256410255,
|
1392 |
+
"grad_norm": 0.09081872370987605,
|
1393 |
+
"learning_rate": 8.919520444921153e-06,
|
1394 |
+
"loss": 0.9819,
|
1395 |
+
"step": 394
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.5384615384615383,
|
1399 |
+
"grad_norm": 0.08905442630582544,
|
1400 |
+
"learning_rate": 8.906323597362547e-06,
|
1401 |
+
"loss": 1.0171,
|
1402 |
+
"step": 396
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 2.551282051282051,
|
1406 |
+
"grad_norm": 0.08717951944686292,
|
1407 |
+
"learning_rate": 8.893056534642938e-06,
|
1408 |
+
"loss": 1.0244,
|
1409 |
+
"step": 398
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 2.564102564102564,
|
1413 |
+
"grad_norm": 0.09573458066741532,
|
1414 |
+
"learning_rate": 8.879719495234363e-06,
|
1415 |
+
"loss": 0.9848,
|
1416 |
+
"step": 400
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 2.5769230769230766,
|
1420 |
+
"grad_norm": 0.0898624666623644,
|
1421 |
+
"learning_rate": 8.866312718866669e-06,
|
1422 |
+
"loss": 0.982,
|
1423 |
+
"step": 402
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 2.58974358974359,
|
1427 |
+
"grad_norm": 0.09305658353350323,
|
1428 |
+
"learning_rate": 8.852836446523213e-06,
|
1429 |
+
"loss": 0.9742,
|
1430 |
+
"step": 404
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 2.6025641025641026,
|
1434 |
+
"grad_norm": 0.08663704229153721,
|
1435 |
+
"learning_rate": 8.83929092043652e-06,
|
1436 |
+
"loss": 0.9783,
|
1437 |
+
"step": 406
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 2.6153846153846154,
|
1441 |
+
"grad_norm": 0.08983846726156959,
|
1442 |
+
"learning_rate": 8.825676384083936e-06,
|
1443 |
+
"loss": 0.998,
|
1444 |
+
"step": 408
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 2.628205128205128,
|
1448 |
+
"grad_norm": 0.09388895481313425,
|
1449 |
+
"learning_rate": 8.811993082183243e-06,
|
1450 |
+
"loss": 1.0005,
|
1451 |
+
"step": 410
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.641025641025641,
|
1455 |
+
"grad_norm": 0.09226783931828283,
|
1456 |
+
"learning_rate": 8.798241260688273e-06,
|
1457 |
+
"loss": 1.0055,
|
1458 |
+
"step": 412
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 2.6538461538461537,
|
1462 |
+
"grad_norm": 0.09021054214140613,
|
1463 |
+
"learning_rate": 8.784421166784476e-06,
|
1464 |
+
"loss": 0.9981,
|
1465 |
+
"step": 414
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.6666666666666665,
|
1469 |
+
"grad_norm": 0.0860573848233807,
|
1470 |
+
"learning_rate": 8.770533048884483e-06,
|
1471 |
+
"loss": 1.0017,
|
1472 |
+
"step": 416
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.6794871794871797,
|
1476 |
+
"grad_norm": 0.0880124822318372,
|
1477 |
+
"learning_rate": 8.756577156623636e-06,
|
1478 |
+
"loss": 0.9834,
|
1479 |
+
"step": 418
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 2.6923076923076925,
|
1483 |
+
"grad_norm": 0.0867421199146975,
|
1484 |
+
"learning_rate": 8.742553740855507e-06,
|
1485 |
+
"loss": 0.9983,
|
1486 |
+
"step": 420
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 2.7051282051282053,
|
1490 |
+
"grad_norm": 0.09006077507273828,
|
1491 |
+
"learning_rate": 8.728463053647382e-06,
|
1492 |
+
"loss": 0.9702,
|
1493 |
+
"step": 422
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.717948717948718,
|
1497 |
+
"grad_norm": 0.08669250030062742,
|
1498 |
+
"learning_rate": 8.71430534827574e-06,
|
1499 |
+
"loss": 0.9952,
|
1500 |
+
"step": 424
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 2.730769230769231,
|
1504 |
+
"grad_norm": 0.09026424854741899,
|
1505 |
+
"learning_rate": 8.700080879221689e-06,
|
1506 |
+
"loss": 1.0054,
|
1507 |
+
"step": 426
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 2.7435897435897436,
|
1511 |
+
"grad_norm": 0.087975640704094,
|
1512 |
+
"learning_rate": 8.685789902166395e-06,
|
1513 |
+
"loss": 0.9845,
|
1514 |
+
"step": 428
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.7564102564102564,
|
1518 |
+
"grad_norm": 0.08642431755631451,
|
1519 |
+
"learning_rate": 8.671432673986493e-06,
|
1520 |
+
"loss": 0.9791,
|
1521 |
+
"step": 430
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 2.769230769230769,
|
1525 |
+
"grad_norm": 0.08649701419340423,
|
1526 |
+
"learning_rate": 8.657009452749466e-06,
|
1527 |
+
"loss": 0.9752,
|
1528 |
+
"step": 432
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 2.782051282051282,
|
1532 |
+
"grad_norm": 0.0879183947838203,
|
1533 |
+
"learning_rate": 8.642520497709001e-06,
|
1534 |
+
"loss": 0.9788,
|
1535 |
+
"step": 434
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.7948717948717947,
|
1539 |
+
"grad_norm": 0.08596416297337815,
|
1540 |
+
"learning_rate": 8.627966069300332e-06,
|
1541 |
+
"loss": 0.9807,
|
1542 |
+
"step": 436
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 2.8076923076923075,
|
1546 |
+
"grad_norm": 0.08918860363970792,
|
1547 |
+
"learning_rate": 8.613346429135567e-06,
|
1548 |
+
"loss": 0.9958,
|
1549 |
+
"step": 438
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.8205128205128203,
|
1553 |
+
"grad_norm": 0.08972585580799317,
|
1554 |
+
"learning_rate": 8.598661839998972e-06,
|
1555 |
+
"loss": 0.9895,
|
1556 |
+
"step": 440
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.8333333333333335,
|
1560 |
+
"grad_norm": 0.08703685151364528,
|
1561 |
+
"learning_rate": 8.583912565842258e-06,
|
1562 |
+
"loss": 0.9652,
|
1563 |
+
"step": 442
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.8461538461538463,
|
1567 |
+
"grad_norm": 0.08688465565057563,
|
1568 |
+
"learning_rate": 8.569098871779828e-06,
|
1569 |
+
"loss": 0.9984,
|
1570 |
+
"step": 444
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 2.858974358974359,
|
1574 |
+
"grad_norm": 0.08809758545326962,
|
1575 |
+
"learning_rate": 8.554221024084019e-06,
|
1576 |
+
"loss": 0.9905,
|
1577 |
+
"step": 446
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 2.871794871794872,
|
1581 |
+
"grad_norm": 0.08572911529655777,
|
1582 |
+
"learning_rate": 8.539279290180315e-06,
|
1583 |
+
"loss": 0.9692,
|
1584 |
+
"step": 448
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 2.8846153846153846,
|
1588 |
+
"grad_norm": 0.08836722634323343,
|
1589 |
+
"learning_rate": 8.524273938642539e-06,
|
1590 |
+
"loss": 0.9547,
|
1591 |
+
"step": 450
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.8974358974358974,
|
1595 |
+
"grad_norm": 0.09242854914045788,
|
1596 |
+
"learning_rate": 8.509205239188017e-06,
|
1597 |
+
"loss": 0.9838,
|
1598 |
+
"step": 452
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.91025641025641,
|
1602 |
+
"grad_norm": 0.08849881930024005,
|
1603 |
+
"learning_rate": 8.494073462672743e-06,
|
1604 |
+
"loss": 0.9615,
|
1605 |
+
"step": 454
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 2.9230769230769234,
|
1609 |
+
"grad_norm": 0.08854620618403236,
|
1610 |
+
"learning_rate": 8.478878881086505e-06,
|
1611 |
+
"loss": 0.9977,
|
1612 |
+
"step": 456
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 2.935897435897436,
|
1616 |
+
"grad_norm": 0.094665430731143,
|
1617 |
+
"learning_rate": 8.463621767547998e-06,
|
1618 |
+
"loss": 0.9927,
|
1619 |
+
"step": 458
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 2.948717948717949,
|
1623 |
+
"grad_norm": 0.09196410792880014,
|
1624 |
+
"learning_rate": 8.448302396299906e-06,
|
1625 |
+
"loss": 1.0113,
|
1626 |
+
"step": 460
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 2.9615384615384617,
|
1630 |
+
"grad_norm": 0.09036486236859728,
|
1631 |
+
"learning_rate": 8.432921042703985e-06,
|
1632 |
+
"loss": 0.9457,
|
1633 |
+
"step": 462
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 2.9743589743589745,
|
1637 |
+
"grad_norm": 0.08576032950610284,
|
1638 |
+
"learning_rate": 8.417477983236107e-06,
|
1639 |
+
"loss": 0.9645,
|
1640 |
+
"step": 464
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 2.9871794871794872,
|
1644 |
+
"grad_norm": 0.08403590001526823,
|
1645 |
+
"learning_rate": 8.401973495481289e-06,
|
1646 |
+
"loss": 0.9544,
|
1647 |
+
"step": 466
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 3.0,
|
1651 |
+
"grad_norm": 0.09355532269950335,
|
1652 |
+
"learning_rate": 8.386407858128707e-06,
|
1653 |
+
"loss": 0.9719,
|
1654 |
+
"step": 468
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 3.0128205128205128,
|
1658 |
+
"grad_norm": 0.08685232548889178,
|
1659 |
+
"learning_rate": 8.370781350966683e-06,
|
1660 |
+
"loss": 0.8933,
|
1661 |
+
"step": 470
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 3.0256410256410255,
|
1665 |
+
"grad_norm": 0.10917681684685593,
|
1666 |
+
"learning_rate": 8.355094254877665e-06,
|
1667 |
+
"loss": 0.9222,
|
1668 |
+
"step": 472
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 3.0384615384615383,
|
1672 |
+
"grad_norm": 0.09821414680349456,
|
1673 |
+
"learning_rate": 8.339346851833163e-06,
|
1674 |
+
"loss": 0.9187,
|
1675 |
+
"step": 474
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 3.051282051282051,
|
1679 |
+
"grad_norm": 0.0953257584501641,
|
1680 |
+
"learning_rate": 8.323539424888695e-06,
|
1681 |
+
"loss": 0.9068,
|
1682 |
+
"step": 476
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 3.064102564102564,
|
1686 |
+
"grad_norm": 0.10096821936698265,
|
1687 |
+
"learning_rate": 8.30767225817869e-06,
|
1688 |
+
"loss": 0.9005,
|
1689 |
+
"step": 478
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.076923076923077,
|
1693 |
+
"grad_norm": 0.09745049198474258,
|
1694 |
+
"learning_rate": 8.291745636911382e-06,
|
1695 |
+
"loss": 0.8955,
|
1696 |
+
"step": 480
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.08974358974359,
|
1700 |
+
"grad_norm": 0.09581071499737452,
|
1701 |
+
"learning_rate": 8.27575984736369e-06,
|
1702 |
+
"loss": 0.9034,
|
1703 |
+
"step": 482
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 3.1025641025641026,
|
1707 |
+
"grad_norm": 0.09048589565605356,
|
1708 |
+
"learning_rate": 8.259715176876069e-06,
|
1709 |
+
"loss": 0.8964,
|
1710 |
+
"step": 484
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 3.1153846153846154,
|
1714 |
+
"grad_norm": 0.09408149538192938,
|
1715 |
+
"learning_rate": 8.243611913847337e-06,
|
1716 |
+
"loss": 0.9157,
|
1717 |
+
"step": 486
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 3.128205128205128,
|
1721 |
+
"grad_norm": 0.0947487050346647,
|
1722 |
+
"learning_rate": 8.2274503477295e-06,
|
1723 |
+
"loss": 0.9053,
|
1724 |
+
"step": 488
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 3.141025641025641,
|
1728 |
+
"grad_norm": 0.09366500902355888,
|
1729 |
+
"learning_rate": 8.211230769022552e-06,
|
1730 |
+
"loss": 0.8925,
|
1731 |
+
"step": 490
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 3.1538461538461537,
|
1735 |
+
"grad_norm": 0.09167161100151112,
|
1736 |
+
"learning_rate": 8.19495346926924e-06,
|
1737 |
+
"loss": 0.9165,
|
1738 |
+
"step": 492
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 3.1666666666666665,
|
1742 |
+
"grad_norm": 0.09307041831758973,
|
1743 |
+
"learning_rate": 8.178618741049841e-06,
|
1744 |
+
"loss": 0.8989,
|
1745 |
+
"step": 494
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 3.1794871794871793,
|
1749 |
+
"grad_norm": 0.09585560939367876,
|
1750 |
+
"learning_rate": 8.162226877976886e-06,
|
1751 |
+
"loss": 0.9147,
|
1752 |
+
"step": 496
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 3.1923076923076925,
|
1756 |
+
"grad_norm": 0.09180060088840723,
|
1757 |
+
"learning_rate": 8.145778174689897e-06,
|
1758 |
+
"loss": 0.8882,
|
1759 |
+
"step": 498
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 3.2051282051282053,
|
1763 |
+
"grad_norm": 0.09609878354099273,
|
1764 |
+
"learning_rate": 8.129272926850079e-06,
|
1765 |
+
"loss": 0.8744,
|
1766 |
+
"step": 500
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 3.217948717948718,
|
1770 |
+
"grad_norm": 0.09691473472460625,
|
1771 |
+
"learning_rate": 8.112711431135014e-06,
|
1772 |
+
"loss": 0.8736,
|
1773 |
+
"step": 502
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 3.230769230769231,
|
1777 |
+
"grad_norm": 0.09236636322834278,
|
1778 |
+
"learning_rate": 8.096093985233323e-06,
|
1779 |
+
"loss": 0.848,
|
1780 |
+
"step": 504
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 3.2435897435897436,
|
1784 |
+
"grad_norm": 0.09704717599279773,
|
1785 |
+
"learning_rate": 8.079420887839316e-06,
|
1786 |
+
"loss": 0.8844,
|
1787 |
+
"step": 506
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 3.2564102564102564,
|
1791 |
+
"grad_norm": 0.09939291409466518,
|
1792 |
+
"learning_rate": 8.062692438647628e-06,
|
1793 |
+
"loss": 0.8866,
|
1794 |
+
"step": 508
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.269230769230769,
|
1798 |
+
"grad_norm": 0.09353962075083472,
|
1799 |
+
"learning_rate": 8.045908938347828e-06,
|
1800 |
+
"loss": 0.8742,
|
1801 |
+
"step": 510
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.282051282051282,
|
1805 |
+
"grad_norm": 0.09465310178443197,
|
1806 |
+
"learning_rate": 8.029070688619013e-06,
|
1807 |
+
"loss": 0.8833,
|
1808 |
+
"step": 512
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 3.2948717948717947,
|
1812 |
+
"grad_norm": 0.09443637715651476,
|
1813 |
+
"learning_rate": 8.012177992124385e-06,
|
1814 |
+
"loss": 0.8794,
|
1815 |
+
"step": 514
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 3.3076923076923075,
|
1819 |
+
"grad_norm": 0.09728431520292821,
|
1820 |
+
"learning_rate": 7.995231152505815e-06,
|
1821 |
+
"loss": 0.8732,
|
1822 |
+
"step": 516
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 3.3205128205128207,
|
1826 |
+
"grad_norm": 0.09428493650909285,
|
1827 |
+
"learning_rate": 7.978230474378383e-06,
|
1828 |
+
"loss": 0.8597,
|
1829 |
+
"step": 518
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 3.3333333333333335,
|
1833 |
+
"grad_norm": 0.09850772889396305,
|
1834 |
+
"learning_rate": 7.961176263324902e-06,
|
1835 |
+
"loss": 0.8624,
|
1836 |
+
"step": 520
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 3.3461538461538463,
|
1840 |
+
"grad_norm": 0.09087037549609535,
|
1841 |
+
"learning_rate": 7.944068825890424e-06,
|
1842 |
+
"loss": 0.8821,
|
1843 |
+
"step": 522
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 3.358974358974359,
|
1847 |
+
"grad_norm": 0.09180369503983593,
|
1848 |
+
"learning_rate": 7.92690846957673e-06,
|
1849 |
+
"loss": 0.8688,
|
1850 |
+
"step": 524
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 3.371794871794872,
|
1854 |
+
"grad_norm": 0.09491604280681391,
|
1855 |
+
"learning_rate": 7.909695502836814e-06,
|
1856 |
+
"loss": 0.8647,
|
1857 |
+
"step": 526
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 3.3846153846153846,
|
1861 |
+
"grad_norm": 0.09921876854138406,
|
1862 |
+
"learning_rate": 7.892430235069317e-06,
|
1863 |
+
"loss": 0.8869,
|
1864 |
+
"step": 528
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 3.3974358974358974,
|
1868 |
+
"grad_norm": 0.09457741703712105,
|
1869 |
+
"learning_rate": 7.875112976612984e-06,
|
1870 |
+
"loss": 0.8639,
|
1871 |
+
"step": 530
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 3.41025641025641,
|
1875 |
+
"grad_norm": 0.09583219613481893,
|
1876 |
+
"learning_rate": 7.857744038741076e-06,
|
1877 |
+
"loss": 0.8805,
|
1878 |
+
"step": 532
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 3.423076923076923,
|
1882 |
+
"grad_norm": 0.09260516206658106,
|
1883 |
+
"learning_rate": 7.84032373365578e-06,
|
1884 |
+
"loss": 0.8603,
|
1885 |
+
"step": 534
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 3.435897435897436,
|
1889 |
+
"grad_norm": 0.09932108403192164,
|
1890 |
+
"learning_rate": 7.822852374482597e-06,
|
1891 |
+
"loss": 0.8658,
|
1892 |
+
"step": 536
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 3.448717948717949,
|
1896 |
+
"grad_norm": 0.09728531208245553,
|
1897 |
+
"learning_rate": 7.805330275264707e-06,
|
1898 |
+
"loss": 0.8536,
|
1899 |
+
"step": 538
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.4615384615384617,
|
1903 |
+
"grad_norm": 0.09952432033061036,
|
1904 |
+
"learning_rate": 7.787757750957335e-06,
|
1905 |
+
"loss": 0.8763,
|
1906 |
+
"step": 540
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.4743589743589745,
|
1910 |
+
"grad_norm": 0.09845329832112057,
|
1911 |
+
"learning_rate": 7.77013511742208e-06,
|
1912 |
+
"loss": 0.8658,
|
1913 |
+
"step": 542
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 3.4871794871794872,
|
1917 |
+
"grad_norm": 0.10349699075619775,
|
1918 |
+
"learning_rate": 7.752462691421245e-06,
|
1919 |
+
"loss": 0.8538,
|
1920 |
+
"step": 544
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 3.5,
|
1924 |
+
"grad_norm": 0.15469316317671902,
|
1925 |
+
"learning_rate": 7.734740790612137e-06,
|
1926 |
+
"loss": 0.8644,
|
1927 |
+
"step": 546
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 3.5128205128205128,
|
1931 |
+
"grad_norm": 0.09649309700047885,
|
1932 |
+
"learning_rate": 7.716969733541357e-06,
|
1933 |
+
"loss": 0.8755,
|
1934 |
+
"step": 548
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 3.5256410256410255,
|
1938 |
+
"grad_norm": 0.09860823779259517,
|
1939 |
+
"learning_rate": 7.699149839639086e-06,
|
1940 |
+
"loss": 0.8471,
|
1941 |
+
"step": 550
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 3.5384615384615383,
|
1945 |
+
"grad_norm": 0.09867635522074884,
|
1946 |
+
"learning_rate": 7.681281429213328e-06,
|
1947 |
+
"loss": 0.8512,
|
1948 |
+
"step": 552
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 3.551282051282051,
|
1952 |
+
"grad_norm": 0.09856703594780034,
|
1953 |
+
"learning_rate": 7.663364823444157e-06,
|
1954 |
+
"loss": 0.8581,
|
1955 |
+
"step": 554
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 3.564102564102564,
|
1959 |
+
"grad_norm": 0.10120010505390695,
|
1960 |
+
"learning_rate": 7.645400344377953e-06,
|
1961 |
+
"loss": 0.8647,
|
1962 |
+
"step": 556
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 3.5769230769230766,
|
1966 |
+
"grad_norm": 0.09353647856294549,
|
1967 |
+
"learning_rate": 7.627388314921602e-06,
|
1968 |
+
"loss": 0.8563,
|
1969 |
+
"step": 558
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 3.58974358974359,
|
1973 |
+
"grad_norm": 0.097727849555005,
|
1974 |
+
"learning_rate": 7.609329058836694e-06,
|
1975 |
+
"loss": 0.8629,
|
1976 |
+
"step": 560
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 3.6025641025641026,
|
1980 |
+
"grad_norm": 0.09185843649741915,
|
1981 |
+
"learning_rate": 7.59122290073371e-06,
|
1982 |
+
"loss": 0.8517,
|
1983 |
+
"step": 562
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 3.6153846153846154,
|
1987 |
+
"grad_norm": 0.16467906411387448,
|
1988 |
+
"learning_rate": 7.5730701660661795e-06,
|
1989 |
+
"loss": 0.8588,
|
1990 |
+
"step": 564
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 3.628205128205128,
|
1994 |
+
"grad_norm": 0.10490078157659109,
|
1995 |
+
"learning_rate": 7.554871181124836e-06,
|
1996 |
+
"loss": 0.8916,
|
1997 |
+
"step": 566
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 3.641025641025641,
|
2001 |
+
"grad_norm": 0.09862237486460196,
|
2002 |
+
"learning_rate": 7.536626273031747e-06,
|
2003 |
+
"loss": 0.8486,
|
2004 |
+
"step": 568
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 3.6538461538461537,
|
2008 |
+
"grad_norm": 0.09855168103779419,
|
2009 |
+
"learning_rate": 7.5183357697344395e-06,
|
2010 |
+
"loss": 0.8532,
|
2011 |
+
"step": 570
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 3.6666666666666665,
|
2015 |
+
"grad_norm": 0.09943631897387811,
|
2016 |
+
"learning_rate": 7.500000000000001e-06,
|
2017 |
+
"loss": 0.8643,
|
2018 |
+
"step": 572
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 3.6794871794871797,
|
2022 |
+
"grad_norm": 0.09470558794565637,
|
2023 |
+
"learning_rate": 7.481619293409173e-06,
|
2024 |
+
"loss": 0.8705,
|
2025 |
+
"step": 574
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 3.6923076923076925,
|
2029 |
+
"grad_norm": 0.09434833275033037,
|
2030 |
+
"learning_rate": 7.4631939803504215e-06,
|
2031 |
+
"loss": 0.8597,
|
2032 |
+
"step": 576
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 3.7051282051282053,
|
2036 |
+
"grad_norm": 0.09852625213361811,
|
2037 |
+
"learning_rate": 7.44472439201401e-06,
|
2038 |
+
"loss": 0.8665,
|
2039 |
+
"step": 578
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 3.717948717948718,
|
2043 |
+
"grad_norm": 0.09522012579767557,
|
2044 |
+
"learning_rate": 7.426210860386032e-06,
|
2045 |
+
"loss": 0.8373,
|
2046 |
+
"step": 580
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 3.730769230769231,
|
2050 |
+
"grad_norm": 0.09872214935386595,
|
2051 |
+
"learning_rate": 7.407653718242449e-06,
|
2052 |
+
"loss": 0.8266,
|
2053 |
+
"step": 582
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 3.7435897435897436,
|
2057 |
+
"grad_norm": 0.09611754066886699,
|
2058 |
+
"learning_rate": 7.3890532991431174e-06,
|
2059 |
+
"loss": 0.8422,
|
2060 |
+
"step": 584
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 3.7564102564102564,
|
2064 |
+
"grad_norm": 0.09430702389773353,
|
2065 |
+
"learning_rate": 7.370409937425781e-06,
|
2066 |
+
"loss": 0.8349,
|
2067 |
+
"step": 586
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 3.769230769230769,
|
2071 |
+
"grad_norm": 0.10000120202753963,
|
2072 |
+
"learning_rate": 7.3517239682000675e-06,
|
2073 |
+
"loss": 0.8589,
|
2074 |
+
"step": 588
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 3.782051282051282,
|
2078 |
+
"grad_norm": 0.09477208728170344,
|
2079 |
+
"learning_rate": 7.332995727341462e-06,
|
2080 |
+
"loss": 0.8591,
|
2081 |
+
"step": 590
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 3.7948717948717947,
|
2085 |
+
"grad_norm": 0.09696166000717225,
|
2086 |
+
"learning_rate": 7.314225551485273e-06,
|
2087 |
+
"loss": 0.8397,
|
2088 |
+
"step": 592
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 3.8076923076923075,
|
2092 |
+
"grad_norm": 0.09621353397155066,
|
2093 |
+
"learning_rate": 7.295413778020579e-06,
|
2094 |
+
"loss": 0.8166,
|
2095 |
+
"step": 594
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 3.8205128205128203,
|
2099 |
+
"grad_norm": 0.09692687114207367,
|
2100 |
+
"learning_rate": 7.276560745084167e-06,
|
2101 |
+
"loss": 0.8521,
|
2102 |
+
"step": 596
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 3.8333333333333335,
|
2106 |
+
"grad_norm": 0.09885126357081214,
|
2107 |
+
"learning_rate": 7.257666791554448e-06,
|
2108 |
+
"loss": 0.8416,
|
2109 |
+
"step": 598
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 3.8461538461538463,
|
2113 |
+
"grad_norm": 0.10239714078021848,
|
2114 |
+
"learning_rate": 7.2387322570453724e-06,
|
2115 |
+
"loss": 0.8324,
|
2116 |
+
"step": 600
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 3.858974358974359,
|
2120 |
+
"grad_norm": 0.11251898784242197,
|
2121 |
+
"learning_rate": 7.219757481900325e-06,
|
2122 |
+
"loss": 0.835,
|
2123 |
+
"step": 602
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 3.871794871794872,
|
2127 |
+
"grad_norm": 0.1005799166719958,
|
2128 |
+
"learning_rate": 7.2007428071860045e-06,
|
2129 |
+
"loss": 0.8035,
|
2130 |
+
"step": 604
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 3.8846153846153846,
|
2134 |
+
"grad_norm": 0.10103534145014936,
|
2135 |
+
"learning_rate": 7.181688574686292e-06,
|
2136 |
+
"loss": 0.8709,
|
2137 |
+
"step": 606
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 3.8974358974358974,
|
2141 |
+
"grad_norm": 0.10027552225015914,
|
2142 |
+
"learning_rate": 7.162595126896111e-06,
|
2143 |
+
"loss": 0.8319,
|
2144 |
+
"step": 608
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 3.91025641025641,
|
2148 |
+
"grad_norm": 0.10075780749863547,
|
2149 |
+
"learning_rate": 7.143462807015271e-06,
|
2150 |
+
"loss": 0.8323,
|
2151 |
+
"step": 610
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 3.9230769230769234,
|
2155 |
+
"grad_norm": 0.09472929060217589,
|
2156 |
+
"learning_rate": 7.1242919589422974e-06,
|
2157 |
+
"loss": 0.8185,
|
2158 |
+
"step": 612
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 3.935897435897436,
|
2162 |
+
"grad_norm": 0.09472378350788888,
|
2163 |
+
"learning_rate": 7.105082927268247e-06,
|
2164 |
+
"loss": 0.8304,
|
2165 |
+
"step": 614
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 3.948717948717949,
|
2169 |
+
"grad_norm": 0.10337359146731352,
|
2170 |
+
"learning_rate": 7.085836057270521e-06,
|
2171 |
+
"loss": 0.8174,
|
2172 |
+
"step": 616
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 3.9615384615384617,
|
2176 |
+
"grad_norm": 0.0983672088113577,
|
2177 |
+
"learning_rate": 7.066551694906651e-06,
|
2178 |
+
"loss": 0.8322,
|
2179 |
+
"step": 618
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 3.9743589743589745,
|
2183 |
+
"grad_norm": 0.1019500525911841,
|
2184 |
+
"learning_rate": 7.047230186808085e-06,
|
2185 |
+
"loss": 0.8021,
|
2186 |
+
"step": 620
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 3.9871794871794872,
|
2190 |
+
"grad_norm": 0.09750574300751329,
|
2191 |
+
"learning_rate": 7.027871880273959e-06,
|
2192 |
+
"loss": 0.7983,
|
2193 |
+
"step": 622
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 4.0,
|
2197 |
+
"grad_norm": 0.10208128186441004,
|
2198 |
+
"learning_rate": 7.008477123264849e-06,
|
2199 |
+
"loss": 0.8239,
|
2200 |
+
"step": 624
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 4.012820512820513,
|
2204 |
+
"grad_norm": 0.10734300522197977,
|
2205 |
+
"learning_rate": 6.989046264396516e-06,
|
2206 |
+
"loss": 0.7678,
|
2207 |
+
"step": 626
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 4.0256410256410255,
|
2211 |
+
"grad_norm": 0.102980617519378,
|
2212 |
+
"learning_rate": 6.96957965293365e-06,
|
2213 |
+
"loss": 0.7377,
|
2214 |
+
"step": 628
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 4.038461538461538,
|
2218 |
+
"grad_norm": 0.12545611352143843,
|
2219 |
+
"learning_rate": 6.9500776387835785e-06,
|
2220 |
+
"loss": 0.7581,
|
2221 |
+
"step": 630
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 4.051282051282051,
|
2225 |
+
"grad_norm": 0.122707057481331,
|
2226 |
+
"learning_rate": 6.9305405724899876e-06,
|
2227 |
+
"loss": 0.7399,
|
2228 |
+
"step": 632
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 4.064102564102564,
|
2232 |
+
"grad_norm": 0.11397293701236821,
|
2233 |
+
"learning_rate": 6.91096880522661e-06,
|
2234 |
+
"loss": 0.7447,
|
2235 |
+
"step": 634
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 4.076923076923077,
|
2239 |
+
"grad_norm": 0.13487306338562802,
|
2240 |
+
"learning_rate": 6.891362688790925e-06,
|
2241 |
+
"loss": 0.7546,
|
2242 |
+
"step": 636
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 4.089743589743589,
|
2246 |
+
"grad_norm": 0.10896326697255375,
|
2247 |
+
"learning_rate": 6.871722575597829e-06,
|
2248 |
+
"loss": 0.7579,
|
2249 |
+
"step": 638
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 4.102564102564102,
|
2253 |
+
"grad_norm": 0.11165624709106642,
|
2254 |
+
"learning_rate": 6.8520488186733e-06,
|
2255 |
+
"loss": 0.7517,
|
2256 |
+
"step": 640
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 4.115384615384615,
|
2260 |
+
"grad_norm": 0.11518303790398043,
|
2261 |
+
"learning_rate": 6.832341771648057e-06,
|
2262 |
+
"loss": 0.7459,
|
2263 |
+
"step": 642
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 4.128205128205128,
|
2267 |
+
"grad_norm": 0.11119475069076129,
|
2268 |
+
"learning_rate": 6.812601788751192e-06,
|
2269 |
+
"loss": 0.7825,
|
2270 |
+
"step": 644
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 4.141025641025641,
|
2274 |
+
"grad_norm": 0.10743202492055963,
|
2275 |
+
"learning_rate": 6.792829224803816e-06,
|
2276 |
+
"loss": 0.7395,
|
2277 |
+
"step": 646
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 4.153846153846154,
|
2281 |
+
"grad_norm": 0.10582985557685172,
|
2282 |
+
"learning_rate": 6.773024435212678e-06,
|
2283 |
+
"loss": 0.7637,
|
2284 |
+
"step": 648
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 4.166666666666667,
|
2288 |
+
"grad_norm": 0.10835455281881788,
|
2289 |
+
"learning_rate": 6.753187775963773e-06,
|
2290 |
+
"loss": 0.7576,
|
2291 |
+
"step": 650
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 4.17948717948718,
|
2295 |
+
"grad_norm": 0.1107213708183791,
|
2296 |
+
"learning_rate": 6.733319603615941e-06,
|
2297 |
+
"loss": 0.7519,
|
2298 |
+
"step": 652
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 4.1923076923076925,
|
2302 |
+
"grad_norm": 0.11143239841237282,
|
2303 |
+
"learning_rate": 6.713420275294467e-06,
|
2304 |
+
"loss": 0.7421,
|
2305 |
+
"step": 654
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 4.205128205128205,
|
2309 |
+
"grad_norm": 0.10135913047939792,
|
2310 |
+
"learning_rate": 6.693490148684654e-06,
|
2311 |
+
"loss": 0.7503,
|
2312 |
+
"step": 656
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 4.217948717948718,
|
2316 |
+
"grad_norm": 0.10935890173613132,
|
2317 |
+
"learning_rate": 6.673529582025398e-06,
|
2318 |
+
"loss": 0.7469,
|
2319 |
+
"step": 658
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 4.230769230769231,
|
2323 |
+
"grad_norm": 0.10682800250997206,
|
2324 |
+
"learning_rate": 6.653538934102743e-06,
|
2325 |
+
"loss": 0.7519,
|
2326 |
+
"step": 660
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 4.243589743589744,
|
2330 |
+
"grad_norm": 0.11174312070750286,
|
2331 |
+
"learning_rate": 6.633518564243442e-06,
|
2332 |
+
"loss": 0.7388,
|
2333 |
+
"step": 662
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 4.256410256410256,
|
2337 |
+
"grad_norm": 0.10996882792698588,
|
2338 |
+
"learning_rate": 6.6134688323084884e-06,
|
2339 |
+
"loss": 0.735,
|
2340 |
+
"step": 664
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 4.269230769230769,
|
2344 |
+
"grad_norm": 0.11513381552989353,
|
2345 |
+
"learning_rate": 6.593390098686653e-06,
|
2346 |
+
"loss": 0.7266,
|
2347 |
+
"step": 666
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 4.282051282051282,
|
2351 |
+
"grad_norm": 0.10383307615951057,
|
2352 |
+
"learning_rate": 6.573282724288001e-06,
|
2353 |
+
"loss": 0.7354,
|
2354 |
+
"step": 668
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 4.294871794871795,
|
2358 |
+
"grad_norm": 0.10064526192695795,
|
2359 |
+
"learning_rate": 6.553147070537413e-06,
|
2360 |
+
"loss": 0.7316,
|
2361 |
+
"step": 670
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 4.3076923076923075,
|
2365 |
+
"grad_norm": 0.10546529880700707,
|
2366 |
+
"learning_rate": 6.532983499368078e-06,
|
2367 |
+
"loss": 0.7345,
|
2368 |
+
"step": 672
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 4.32051282051282,
|
2372 |
+
"grad_norm": 0.10452514955349174,
|
2373 |
+
"learning_rate": 6.512792373215e-06,
|
2374 |
+
"loss": 0.7552,
|
2375 |
+
"step": 674
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 4.333333333333333,
|
2379 |
+
"grad_norm": 0.10501851155628895,
|
2380 |
+
"learning_rate": 6.492574055008474e-06,
|
2381 |
+
"loss": 0.715,
|
2382 |
+
"step": 676
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 4.346153846153846,
|
2386 |
+
"grad_norm": 0.10411036896818421,
|
2387 |
+
"learning_rate": 6.472328908167562e-06,
|
2388 |
+
"loss": 0.729,
|
2389 |
+
"step": 678
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 4.358974358974359,
|
2393 |
+
"grad_norm": 0.11127049713049718,
|
2394 |
+
"learning_rate": 6.452057296593568e-06,
|
2395 |
+
"loss": 0.744,
|
2396 |
+
"step": 680
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 4.371794871794872,
|
2400 |
+
"grad_norm": 0.12676881136201423,
|
2401 |
+
"learning_rate": 6.431759584663492e-06,
|
2402 |
+
"loss": 0.7588,
|
2403 |
+
"step": 682
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 4.384615384615385,
|
2407 |
+
"grad_norm": 0.105870619579206,
|
2408 |
+
"learning_rate": 6.411436137223479e-06,
|
2409 |
+
"loss": 0.7247,
|
2410 |
+
"step": 684
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 4.397435897435898,
|
2414 |
+
"grad_norm": 0.10374120826824249,
|
2415 |
+
"learning_rate": 6.391087319582264e-06,
|
2416 |
+
"loss": 0.7309,
|
2417 |
+
"step": 686
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 4.410256410256411,
|
2421 |
+
"grad_norm": 0.10865846153479375,
|
2422 |
+
"learning_rate": 6.370713497504607e-06,
|
2423 |
+
"loss": 0.7482,
|
2424 |
+
"step": 688
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 4.423076923076923,
|
2428 |
+
"grad_norm": 0.11160085810481411,
|
2429 |
+
"learning_rate": 6.350315037204714e-06,
|
2430 |
+
"loss": 0.7254,
|
2431 |
+
"step": 690
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 4.435897435897436,
|
2435 |
+
"grad_norm": 0.10544486611527323,
|
2436 |
+
"learning_rate": 6.329892305339659e-06,
|
2437 |
+
"loss": 0.7053,
|
2438 |
+
"step": 692
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 4.448717948717949,
|
2442 |
+
"grad_norm": 0.10611707780750092,
|
2443 |
+
"learning_rate": 6.309445669002787e-06,
|
2444 |
+
"loss": 0.7078,
|
2445 |
+
"step": 694
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 4.461538461538462,
|
2449 |
+
"grad_norm": 0.10588157071847835,
|
2450 |
+
"learning_rate": 6.288975495717124e-06,
|
2451 |
+
"loss": 0.7412,
|
2452 |
+
"step": 696
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 4.4743589743589745,
|
2456 |
+
"grad_norm": 0.10785564192135899,
|
2457 |
+
"learning_rate": 6.268482153428763e-06,
|
2458 |
+
"loss": 0.7289,
|
2459 |
+
"step": 698
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 4.487179487179487,
|
2463 |
+
"grad_norm": 0.10456174831291559,
|
2464 |
+
"learning_rate": 6.247966010500258e-06,
|
2465 |
+
"loss": 0.7233,
|
2466 |
+
"step": 700
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 4.5,
|
2470 |
+
"grad_norm": 0.10739198046560715,
|
2471 |
+
"learning_rate": 6.227427435703997e-06,
|
2472 |
+
"loss": 0.7308,
|
2473 |
+
"step": 702
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 4.512820512820513,
|
2477 |
+
"grad_norm": 0.11062331534549659,
|
2478 |
+
"learning_rate": 6.206866798215571e-06,
|
2479 |
+
"loss": 0.7188,
|
2480 |
+
"step": 704
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 4.5256410256410255,
|
2484 |
+
"grad_norm": 0.1120412879852177,
|
2485 |
+
"learning_rate": 6.186284467607149e-06,
|
2486 |
+
"loss": 0.7149,
|
2487 |
+
"step": 706
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 4.538461538461538,
|
2491 |
+
"grad_norm": 0.10581044212948068,
|
2492 |
+
"learning_rate": 6.165680813840822e-06,
|
2493 |
+
"loss": 0.7286,
|
2494 |
+
"step": 708
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 4.551282051282051,
|
2498 |
+
"grad_norm": 0.10581925858925155,
|
2499 |
+
"learning_rate": 6.1450562072619635e-06,
|
2500 |
+
"loss": 0.6854,
|
2501 |
+
"step": 710
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 4.564102564102564,
|
2505 |
+
"grad_norm": 0.11850925857398317,
|
2506 |
+
"learning_rate": 6.124411018592568e-06,
|
2507 |
+
"loss": 0.7215,
|
2508 |
+
"step": 712
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 4.576923076923077,
|
2512 |
+
"grad_norm": 0.12029983367038724,
|
2513 |
+
"learning_rate": 6.103745618924587e-06,
|
2514 |
+
"loss": 0.7142,
|
2515 |
+
"step": 714
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 4.589743589743589,
|
2519 |
+
"grad_norm": 0.10567103079137533,
|
2520 |
+
"learning_rate": 6.0830603797132574e-06,
|
2521 |
+
"loss": 0.7162,
|
2522 |
+
"step": 716
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 4.602564102564102,
|
2526 |
+
"grad_norm": 0.10836686741052724,
|
2527 |
+
"learning_rate": 6.0623556727704306e-06,
|
2528 |
+
"loss": 0.7165,
|
2529 |
+
"step": 718
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 4.615384615384615,
|
2533 |
+
"grad_norm": 0.11249604087548312,
|
2534 |
+
"learning_rate": 6.041631870257882e-06,
|
2535 |
+
"loss": 0.7383,
|
2536 |
+
"step": 720
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 4.628205128205128,
|
2540 |
+
"grad_norm": 0.1082063599668396,
|
2541 |
+
"learning_rate": 6.020889344680627e-06,
|
2542 |
+
"loss": 0.6952,
|
2543 |
+
"step": 722
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 4.641025641025641,
|
2547 |
+
"grad_norm": 0.10282892185990167,
|
2548 |
+
"learning_rate": 6.000128468880223e-06,
|
2549 |
+
"loss": 0.7167,
|
2550 |
+
"step": 724
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 4.653846153846154,
|
2554 |
+
"grad_norm": 0.14775806059988206,
|
2555 |
+
"learning_rate": 5.979349616028067e-06,
|
2556 |
+
"loss": 0.7015,
|
2557 |
+
"step": 726
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 4.666666666666667,
|
2561 |
+
"grad_norm": 0.1146560861251404,
|
2562 |
+
"learning_rate": 5.958553159618693e-06,
|
2563 |
+
"loss": 0.7213,
|
2564 |
+
"step": 728
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 4.67948717948718,
|
2568 |
+
"grad_norm": 0.10561771243314702,
|
2569 |
+
"learning_rate": 5.937739473463047e-06,
|
2570 |
+
"loss": 0.7296,
|
2571 |
+
"step": 730
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 4.6923076923076925,
|
2575 |
+
"grad_norm": 0.1030552904773058,
|
2576 |
+
"learning_rate": 5.916908931681781e-06,
|
2577 |
+
"loss": 0.7123,
|
2578 |
+
"step": 732
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 4.705128205128205,
|
2582 |
+
"grad_norm": 0.11007539115142843,
|
2583 |
+
"learning_rate": 5.896061908698521e-06,
|
2584 |
+
"loss": 0.7048,
|
2585 |
+
"step": 734
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 4.717948717948718,
|
2589 |
+
"grad_norm": 0.11416376306689043,
|
2590 |
+
"learning_rate": 5.8751987792331365e-06,
|
2591 |
+
"loss": 0.7137,
|
2592 |
+
"step": 736
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 4.730769230769231,
|
2596 |
+
"grad_norm": 0.10152180107259362,
|
2597 |
+
"learning_rate": 5.854319918295012e-06,
|
2598 |
+
"loss": 0.7051,
|
2599 |
+
"step": 738
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 4.743589743589744,
|
2603 |
+
"grad_norm": 0.11206883891832514,
|
2604 |
+
"learning_rate": 5.833425701176294e-06,
|
2605 |
+
"loss": 0.6923,
|
2606 |
+
"step": 740
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 4.756410256410256,
|
2610 |
+
"grad_norm": 0.10804199427828234,
|
2611 |
+
"learning_rate": 5.812516503445158e-06,
|
2612 |
+
"loss": 0.6955,
|
2613 |
+
"step": 742
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 4.769230769230769,
|
2617 |
+
"grad_norm": 0.10618536471151145,
|
2618 |
+
"learning_rate": 5.79159270093905e-06,
|
2619 |
+
"loss": 0.7051,
|
2620 |
+
"step": 744
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 4.782051282051282,
|
2624 |
+
"grad_norm": 0.112445946670164,
|
2625 |
+
"learning_rate": 5.770654669757935e-06,
|
2626 |
+
"loss": 0.6862,
|
2627 |
+
"step": 746
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 4.794871794871795,
|
2631 |
+
"grad_norm": 0.10623939719616725,
|
2632 |
+
"learning_rate": 5.749702786257529e-06,
|
2633 |
+
"loss": 0.7021,
|
2634 |
+
"step": 748
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 4.8076923076923075,
|
2638 |
+
"grad_norm": 0.11066503537728437,
|
2639 |
+
"learning_rate": 5.7287374270425475e-06,
|
2640 |
+
"loss": 0.7083,
|
2641 |
+
"step": 750
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 4.82051282051282,
|
2645 |
+
"grad_norm": 0.11956485729401434,
|
2646 |
+
"learning_rate": 5.707758968959923e-06,
|
2647 |
+
"loss": 0.7052,
|
2648 |
+
"step": 752
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 4.833333333333333,
|
2652 |
+
"grad_norm": 0.11607859173183654,
|
2653 |
+
"learning_rate": 5.686767789092041e-06,
|
2654 |
+
"loss": 0.7114,
|
2655 |
+
"step": 754
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 4.846153846153846,
|
2659 |
+
"grad_norm": 0.10875829497210732,
|
2660 |
+
"learning_rate": 5.6657642647499545e-06,
|
2661 |
+
"loss": 0.7159,
|
2662 |
+
"step": 756
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 4.858974358974359,
|
2666 |
+
"grad_norm": 0.10952816111674243,
|
2667 |
+
"learning_rate": 5.644748773466606e-06,
|
2668 |
+
"loss": 0.7036,
|
2669 |
+
"step": 758
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 4.871794871794872,
|
2673 |
+
"grad_norm": 0.10684780948629531,
|
2674 |
+
"learning_rate": 5.62372169299004e-06,
|
2675 |
+
"loss": 0.7225,
|
2676 |
+
"step": 760
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 4.884615384615385,
|
2680 |
+
"grad_norm": 0.1047662448976948,
|
2681 |
+
"learning_rate": 5.6026834012766155e-06,
|
2682 |
+
"loss": 0.6805,
|
2683 |
+
"step": 762
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 4.897435897435898,
|
2687 |
+
"grad_norm": 0.10955003114927836,
|
2688 |
+
"learning_rate": 5.581634276484211e-06,
|
2689 |
+
"loss": 0.6792,
|
2690 |
+
"step": 764
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 4.910256410256411,
|
2694 |
+
"grad_norm": 0.10878018550941551,
|
2695 |
+
"learning_rate": 5.560574696965425e-06,
|
2696 |
+
"loss": 0.6921,
|
2697 |
+
"step": 766
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 4.923076923076923,
|
2701 |
+
"grad_norm": 0.11093790171018045,
|
2702 |
+
"learning_rate": 5.539505041260779e-06,
|
2703 |
+
"loss": 0.6956,
|
2704 |
+
"step": 768
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 4.935897435897436,
|
2708 |
+
"grad_norm": 0.1115655815203421,
|
2709 |
+
"learning_rate": 5.518425688091906e-06,
|
2710 |
+
"loss": 0.7024,
|
2711 |
+
"step": 770
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 4.948717948717949,
|
2715 |
+
"grad_norm": 0.1131005595068268,
|
2716 |
+
"learning_rate": 5.497337016354757e-06,
|
2717 |
+
"loss": 0.7148,
|
2718 |
+
"step": 772
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 4.961538461538462,
|
2722 |
+
"grad_norm": 0.11347516336979874,
|
2723 |
+
"learning_rate": 5.476239405112775e-06,
|
2724 |
+
"loss": 0.6816,
|
2725 |
+
"step": 774
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 4.9743589743589745,
|
2729 |
+
"grad_norm": 0.10898186232548415,
|
2730 |
+
"learning_rate": 5.45513323359009e-06,
|
2731 |
+
"loss": 0.7273,
|
2732 |
+
"step": 776
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 4.987179487179487,
|
2736 |
+
"grad_norm": 0.11549198646562549,
|
2737 |
+
"learning_rate": 5.434018881164702e-06,
|
2738 |
+
"loss": 0.6917,
|
2739 |
+
"step": 778
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 5.0,
|
2743 |
+
"grad_norm": 0.10772346133987304,
|
2744 |
+
"learning_rate": 5.412896727361663e-06,
|
2745 |
+
"loss": 0.6863,
|
2746 |
+
"step": 780
|
2747 |
+
}
|
2748 |
+
],
|
2749 |
+
"logging_steps": 2,
|
2750 |
+
"max_steps": 1560,
|
2751 |
+
"num_input_tokens_seen": 0,
|
2752 |
+
"num_train_epochs": 10,
|
2753 |
+
"save_steps": 500,
|
2754 |
+
"stateful_callbacks": {
|
2755 |
+
"TrainerControl": {
|
2756 |
+
"args": {
|
2757 |
+
"should_epoch_stop": false,
|
2758 |
+
"should_evaluate": false,
|
2759 |
+
"should_log": false,
|
2760 |
+
"should_save": true,
|
2761 |
+
"should_training_stop": false
|
2762 |
+
},
|
2763 |
+
"attributes": {}
|
2764 |
+
}
|
2765 |
+
},
|
2766 |
+
"total_flos": 3.1578354913325875e+19,
|
2767 |
+
"train_batch_size": 2,
|
2768 |
+
"trial_name": null,
|
2769 |
+
"trial_params": null
|
2770 |
+
}
|
uccix_instruct_191224_lr1e-5/checkpoint-780/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d03657189395bc20a651edd32d0f180bbab64bb031be8ead254fb2e38ffc37e
|
3 |
+
size 7288
|
uccix_instruct_191224_lr1e-5/checkpoint-780/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|