Commit
·
6f94ada
1
Parent(s):
ab6032d
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +16 -40
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +19 -18
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +7 -7
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,45 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': False
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 1000000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 256
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'RegisGraptin/LunarLander-v2'
|
58 |
-
'batch_size': 1024
|
59 |
-
'minibatch_size': 256}
|
60 |
-
```
|
61 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 276.08 +/- 24.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c93197310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c931973a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c93197430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c931974c0>", "_build": "<function ActorCriticPolicy._build at 0x7f9c93197550>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c931975e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c93197670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c93197700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c93197790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c93197820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c931978b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9c93190d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671828164748103815, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2f6LwKt1+5wXcquIVYhLNlHG07nPNLNwAAgD8AAIA/hpUqPuGUID8+aZK90geqvneDMD1jxuu8AAAAAAAAAAAAsNY7bfQTPoTmtb2Grpi+P/vTPIkahrwAAAAAAAAAAJrxrrvU98w+NegJPrNuwr5cghM+296YvQAAAAAAAAAA5k1nPbepAj/mtKA8xOWIvuK4LT0e6VS9AAAAAAAAAAAzU2i78II5P3pjVj0wQ7G+VViXPArKxrwAAAAAAAAAAGY4QLx7rI26Tk4DtNGMYa1qlxG70x+bMwAAgD8AAIA/mk8CPa5i+D685yI+PKizvlJLyz1iWG+9AAAAAAAAAACTmwy+2b6AP5l/Gb2nfZ2+cjmjvg6wvT0AAAAAAAAAAICyLj6DqQ0//sSKvSeHur78jAE+/RcQvAAAAAAAAAAAzXZlvE8nGrwFOom8wiuHPc8JfDvF/NC6AACAPwAAgD9AnIM9hUAfP2mSOL28GZK+CyICvHKgor0AAAAAAAAAAI2aFD4BM5Q/Xe/dPvEQ677Mdno+ndJrPgAAAAAAAAAAmjuLvXuOuroPwMw3ZtK9MmeSpTkaOem2AACAPwAAgD8zo+G68xSmPvPzsT0NCre+qYYLPkKmTL0AAAAAAAAAAJpRJD1Mjx4+0sbaPaH9kb52wAE+EPrjPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIud42U6GyckCUhpRSlIwBbJRNGQGMAXSUR0CgWEtB4UvgdX2UKGgGaAloD0MIStI1k+80cUCUhpRSlGgVS/5oFkdAoFif+n62v3V9lChoBmgJaA9DCCWTUzvDbnJAlIaUUpRoFU0VAWgWR0CgWKbHZK4AdX2UKGgGaAloD0MIU8+CUN59cECUhpRSlGgVS/toFkdAoFisS5AhS3V9lChoBmgJaA9DCC47xD9sH3JAlIaUUpRoFU0KAWgWR0CgWNOWjXWfdX2UKGgGaAloD0MI1EfgDz/uUUCUhpRSlGgVS7poFkdAoFk6wB5ooXV9lChoBmgJaA9DCFsMHqY9XHJAlIaUUpRoFU0uAWgWR0CgWUGXHBDYdX2UKGgGaAloD0MIgQpHkApJcUCUhpRSlGgVTQkBaBZHQKBZwekHlfZ1fZQoaAZoCWgPQwhQptHkIh1yQJSGlFKUaBVNAgFoFkdAoFnYAjps43V9lChoBmgJaA9DCP5l9+RhP3BAlIaUUpRoFU0JAWgWR0CgWjuM+/xldX2UKGgGaAloD0MIMxXikXgLcUCUhpRSlGgVTR8BaBZHQKBa6zC1qnF1fZQoaAZoCWgPQwgzox8Np1dxQJSGlFKUaBVNHwFoFkdAoFrvZuhsZnV9lChoBmgJaA9DCLHEA8qmH3FAlIaUUpRoFU0YAWgWR0CgWvNu1ndwdX2UKGgGaAloD0MIPpP98zQdcUCUhpRSlGgVTQEBaBZHQKBbDihnJ1d1fZQoaAZoCWgPQwjSNv5EJTtwQJSGlFKUaBVNDgFoFkdAoFsyr7waznV9lChoBmgJaA9DCBdH5SbqdnFAlIaUUpRoFU0DAWgWR0CgW28gpz91dX2UKGgGaAloD0MICTNt/8q3cUCUhpRSlGgVS/VoFkdAoFuZqGlANXV9lChoBmgJaA9DCAfvq3IhR3JAlIaUUpRoFUvkaBZHQKBboMir1dx1fZQoaAZoCWgPQwjNzTeiu+FwQJSGlFKUaBVNQAFoFkdAoFuqteUpu3V9lChoBmgJaA9DCEBqEyf3I3NAlIaUUpRoFU0MAWgWR0CgW9zgEU0vdX2UKGgGaAloD0MI72/QXn02bkCUhpRSlGgVTToBaBZHQKBcZzpX6qN1fZQoaAZoCWgPQwgQscHCSd1wQJSGlFKUaBVNCwFoFkdAoFx75mAbynV9lChoBmgJaA9DCHYzox+N83FAlIaUUpRoFU0fAWgWR0CgXK14gRsedX2UKGgGaAloD0MIflaZKe3JcUCUhpRSlGgVS/VoFkdAoFy4GB4D93V9lChoBmgJaA9DCL+er1kul21AlIaUUpRoFU0BAWgWR0CgXOkyckMTdX2UKGgGaAloD0MIlUkNbYDTbUCUhpRSlGgVTSEBaBZHQKBdttNSIgx1fZQoaAZoCWgPQwh324XmOnJxQJSGlFKUaBVL3WgWR0CgXgJYkmhNdX2UKGgGaAloD0MIlUiil1EHcECUhpRSlGgVTQYBaBZHQKBeBdyDIzZ1fZQoaAZoCWgPQwjd6jnp/XluQJSGlFKUaBVL9WgWR0CgXhG9g4OudX2UKGgGaAloD0MI0765v7oxc0CUhpRSlGgVS95oFkdAoF5GpKjBVXV9lChoBmgJaA9DCAOzQpEu0XBAlIaUUpRoFU0bAWgWR0CgXkcJ2MbWdX2UKGgGaAloD0MI28NeKKCmckCUhpRSlGgVTRMBaBZHQKBeTIwM6R11fZQoaAZoCWgPQwggXtcvmNBwQJSGlFKUaBVNJAFoFkdAoF5k1baAWnV9lChoBmgJaA9DCH/aqE4HmnBAlIaUUpRoFUv0aBZHQKBedcD8tPJ1fZQoaAZoCWgPQwh+x/DYDzBxQJSGlFKUaBVL72gWR0CgXqZha1TjdX2UKGgGaAloD0MIJjlgV5OYcUCUhpRSlGgVTRYBaBZHQKBezkqc3ER1fZQoaAZoCWgPQwiBJsKGJ6FwQJSGlFKUaBVL62gWR0CgXzAow22odX2UKGgGaAloD0MIPwEUI4t0c0CUhpRSlGgVTQ4BaBZHQKBfg6mO2iN1fZQoaAZoCWgPQwiOsRNeQjFwQJSGlFKUaBVL82gWR0CgX4l4C6pYdX2UKGgGaAloD0MIh/pd2JqCb0CUhpRSlGgVTRoBaBZHQKBpHvCuU2V1fZQoaAZoCWgPQwjZzvdT45VtQJSGlFKUaBVNFQFoFkdAoGlc1jy4F3V9lChoBmgJaA9DCPJbdLLUUW9AlIaUUpRoFUv3aBZHQKBp0//vOQh1fZQoaAZoCWgPQwgJpwUvOvJwQJSGlFKUaBVL7GgWR0CgagRoRIz4dX2UKGgGaAloD0MIj+Gxn0UsckCUhpRSlGgVS/xoFkdAoGoo2ETQFHV9lChoBmgJaA9DCFSQn42cgHFAlIaUUpRoFUv+aBZHQKBqMw7DEWJ1fZQoaAZoCWgPQwg8odefRIdwQJSGlFKUaBVNAAFoFkdAoGp5Uo8ZDXV9lChoBmgJaA9DCGA7GLFP+3JAlIaUUpRoFUv1aBZHQKBqePLgXM11fZQoaAZoCWgPQwgJbqRsEdlsQJSGlFKUaBVNAAFoFkdAoGqBS75EdHV9lChoBmgJaA9DCB7cnbXb73FAlIaUUpRoFU0DAWgWR0CgaoWOp84QdX2UKGgGaAloD0MIiZl9HiNfcUCUhpRSlGgVS/ZoFkdAoGqPAwfyPXV9lChoBmgJaA9DCP7UeOmmDXFAlIaUUpRoFUv1aBZHQKBq5iWE9Md1fZQoaAZoCWgPQwj6uaEpu8BwQJSGlFKUaBVNMQFoFkdAoGtf114gR3V9lChoBmgJaA9DCBwo8E7+Z3JAlIaUUpRoFUv/aBZHQKBrZBE8aGZ1fZQoaAZoCWgPQwjQKF36lz9yQJSGlFKUaBVL8WgWR0Cga4efqX4TdX2UKGgGaAloD0MIZeHra51ucUCUhpRSlGgVTQ0BaBZHQKBr2vJzT4N1fZQoaAZoCWgPQwhAwFq1q7pwQJSGlFKUaBVL92gWR0CgbD1UuL75dX2UKGgGaAloD0MIW1653jalbkCUhpRSlGgVTRABaBZHQKBsU5xR2r51fZQoaAZoCWgPQwjCbW3heQdyQJSGlFKUaBVL8WgWR0CgbMjMV1wHdX2UKGgGaAloD0MINpTai6gYcECUhpRSlGgVS/9oFkdAoG0qLS/j83V9lChoBmgJaA9DCPqcu12vwm1AlIaUUpRoFU0eAWgWR0CgbTya3I+4dX2UKGgGaAloD0MI0NA/wUWwckCUhpRSlGgVS/ZoFkdAoG1gsCkoF3V9lChoBmgJaA9DCCZw624eDnNAlIaUUpRoFUv3aBZHQKBtZPUrkKh1fZQoaAZoCWgPQwgGuvYF9OFxQJSGlFKUaBVL+2gWR0CgbYVMmF8HdX2UKGgGaAloD0MIEqERbJwbckCUhpRSlGgVTQMBaBZHQKBtknIhhYx1fZQoaAZoCWgPQwh9XYb/9JZvQJSGlFKUaBVNJQFoFkdAoG2qdnTRY3V9lChoBmgJaA9DCIqRJXPs7nBAlIaUUpRoFU0UAWgWR0CgbcDPOY6XdX2UKGgGaAloD0MIZfz7jAtCcECUhpRSlGgVS/1oFkdAoG3pzNliB3V9lChoBmgJaA9DCINRSZ2AtHJAlIaUUpRoFUvsaBZHQKBuL3BYV7B1fZQoaAZoCWgPQwgIdvwXyC1wQJSGlFKUaBVL72gWR0CgbmPM8ox6dX2UKGgGaAloD0MI0xIro5H4cUCUhpRSlGgVTQ4BaBZHQKBulm9xp+N1fZQoaAZoCWgPQwhZ+Ppal6VyQJSGlFKUaBVL9GgWR0CgbsWnsLOSdX2UKGgGaAloD0MInrXbLjQIc0CUhpRSlGgVS/1oFkdAoG9Qrxy4nXV9lChoBmgJaA9DCCKI83BCenBAlIaUUpRoFU0PAWgWR0Cgb3VLJ0W/dX2UKGgGaAloD0MIp804DRGRckCUhpRSlGgVS/loFkdAoG+11yNn5HV9lChoBmgJaA9DCFUvv9Pki2xAlIaUUpRoFUv4aBZHQKBwH/ZuhsZ1fZQoaAZoCWgPQwiQuwhTFLdxQJSGlFKUaBVL/GgWR0CgcHwJHAh0dX2UKGgGaAloD0MIzxCOWfYSckCUhpRSlGgVTQYBaBZHQKBwe2NvOyF1fZQoaAZoCWgPQwgFGJY/nxpyQJSGlFKUaBVNFwFoFkdAoHB7a0x/NXV9lChoBmgJaA9DCFn8prASTXJAlIaUUpRoFUv4aBZHQKBwfzRQaaV1fZQoaAZoCWgPQwg57pQOlnxxQJSGlFKUaBVL+mgWR0CgcLOs1baAdX2UKGgGaAloD0MIRG0bRsFdb0CUhpRSlGgVTSABaBZHQKBwxLzwtrd1fZQoaAZoCWgPQwjNHmgFBt9tQJSGlFKUaBVNCgFoFkdAoHDMsWfseHV9lChoBmgJaA9DCKEuUijLnXJAlIaUUpRoFU0RAWgWR0CgcRw5myxBdX2UKGgGaAloD0MIGR2QhL3dcECUhpRSlGgVS/hoFkdAoHEhaq0dBHV9lChoBmgJaA9DCL5ojxeSMXJAlIaUUpRoFUvyaBZHQKBxoxwhnrZ1fZQoaAZoCWgPQwgjE/BrJOtwQJSGlFKUaBVNFgFoFkdAoHGnKji4rnV9lChoBmgJaA9DCJiKjXndCHNAlIaUUpRoFU0cAWgWR0Cgcesj/uLKdX2UKGgGaAloD0MIlbcjnNZ8cUCUhpRSlGgVS/toFkdAoHJFupCKJnV9lChoBmgJaA9DCCeloNtLgnJAlIaUUpRoFUvsaBZHQKByeKkVN6B1fZQoaAZoCWgPQwi/SdOg6AZyQJSGlFKUaBVNDwFoFkdAoHKoxrSE13V9lChoBmgJaA9DCFa7JqQ1NEpAlIaUUpRoFUvEaBZHQKBzAw/xDst1fZQoaAZoCWgPQwimQ6fn3fJvQJSGlFKUaBVNBwFoFkdAoHM/OfNA1XV9lChoBmgJaA9DCPgXQWPmN3BAlIaUUpRoFUv1aBZHQKBzW67ulXR1fZQoaAZoCWgPQwhgzJasStJwQJSGlFKUaBVNBwFoFkdAoHOcwYcebXV9lChoBmgJaA9DCBV0e0nj6nFAlIaUUpRoFUv2aBZHQKBzwrYoRZl1fZQoaAZoCWgPQwj7rDJTWhRxQJSGlFKUaBVNFQFoFkdAoHPOsV+I/XV9lChoBmgJaA9DCKkXfJqT4XBAlIaUUpRoFU0YAWgWR0Cgc9xuKoAGdX2UKGgGaAloD0MIfCjRkkcQckCUhpRSlGgVS+doFkdAoHP0ahpQDXV9lChoBmgJaA9DCD9UGjHzSHJAlIaUUpRoFU0yAWgWR0CgdFYLkS26dX2UKGgGaAloD0MIrMYS1gbSckCUhpRSlGgVTSMBaBZHQKB0qM8YAKh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f021a2183a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f021a218430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f021a2184c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f021a218550>", "_build": "<function ActorCriticPolicy._build at 0x7f021a2185e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f021a218670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f021a218700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f021a218790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f021a218820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f021a2188b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f021a218940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f021a2189d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f021a20ee10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677410093913774506, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpROb3DhXC6CBtUuE04j7IObfI6HgN2NwAAgD8AAIA/s0NfPWA/nj5yIrs9MPKfvpXL5D2amac6AAAAAAAAAADm+jg99mRnPYU7ob6GwZ6+Y9hYvoKPZL0AAAAAAAAAAIBYK76RSqw/Oh4av+DoxL5QMpO+3cb2vgAAAAAAAAAA8+Isvqu1Qj88SpI+vVOnvg0fJ740C5k+AAAAAAAAAAAA4C46tCK5PiL/qzzMTpu+w+6lvDAbHz0AAAAAAAAAAGZuW723qoA/sB7xvMltwr6JESe+/iDQPQAAAAAAAAAAzdKfvGzXOz+wHgk+RufYvlMYMzxix8o9AAAAAAAAAAANv7C9qKq2P96jjb7DmKS+zyIXvgplhL4AAAAAAAAAAIC9Hz2wb/A+nt3Eva3Dob4a19q8+HxxvAAAAAAAAAAAZqqSu4khDj8ytnA9rE+/vqFWMT33Tcc9AAAAAAAAAAANbwq+0YZfP9Oabj4qg62+JSaYvbgLBz4AAAAAAAAAAE0MKD33mjw/eqydO1nnn76jydo8xZVaPQAAAAAAAAAAzbrivLXHnD8+umG8aXmwvniy3711/Va9AAAAAAAAAACz4K09/QCuP+KYvj7ra8S+5sQ5PlS4PD4AAAAAAAAAAM3eG75PJKI/Gh+lvtx8zb74d7m+DJ4lvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIezNqvkoZcUCUhpRSlIwBbJRL84wBdJRHQJ6uriZOSGJ1fZQoaAZoCWgPQwjrOel9I69yQJSGlFKUaBVNFwFoFkdAnq7VkUbkwXV9lChoBmgJaA9DCAJGlzeHjHJAlIaUUpRoFUvuaBZHQJ6vGbZvkzZ1fZQoaAZoCWgPQwh+5UF6yoJxQJSGlFKUaBVNBgFoFkdAnq9XDWK/EnV9lChoBmgJaA9DCIZY/RGG2XBAlIaUUpRoFUvhaBZHQJ6vbBN21Ul1fZQoaAZoCWgPQwjl0viFV1BxQJSGlFKUaBVL/2gWR0CesABo24usdX2UKGgGaAloD0MIoWmJlZHgcECUhpRSlGgVTQsBaBZHQJ6wbGrCFbp1fZQoaAZoCWgPQwgsZ++MtgRwQJSGlFKUaBVL62gWR0CesUhjOLR8dX2UKGgGaAloD0MISBXFq+zBc0CUhpRSlGgVTQQBaBZHQJ6xY36yjYZ1fZQoaAZoCWgPQwh+Uu3Tsb5wQJSGlFKUaBVNEAFoFkdAnrHHSF49o3V9lChoBmgJaA9DCL8K8N2mXXJAlIaUUpRoFUvxaBZHQJ6x5A0Kqn51fZQoaAZoCWgPQwgjL2tigTtxQJSGlFKUaBVNFwFoFkdAnrIyZrpJPXV9lChoBmgJaA9DCO2cZoF2YnBAlIaUUpRoFUv2aBZHQJ6yQKtxMnJ1fZQoaAZoCWgPQwg5Yi0+RYhyQJSGlFKUaBVL+WgWR0CeslyBTXJ6dX2UKGgGaAloD0MIy9k7o60ZckCUhpRSlGgVS+1oFkdAnrKKjafzz3V9lChoBmgJaA9DCF6DvvT2PzpAlIaUUpRoFUuwaBZHQJ6y0O/cnE51fZQoaAZoCWgPQwjYLJeNzuZuQJSGlFKUaBVL7WgWR0Ces4pQUHpsdX2UKGgGaAloD0MIa0QwDu5DcECUhpRSlGgVS+ZoFkdAnrPGVu76HnV9lChoBmgJaA9DCGglrfhG/HFAlIaUUpRoFUvmaBZHQJ60eHTI/7l1fZQoaAZoCWgPQwiv6qwWGGxwQJSGlFKUaBVL+mgWR0CetJvES/TLdX2UKGgGaAloD0MIz2bV5+r5cUCUhpRSlGgVS+9oFkdAnrSWovSMLnV9lChoBmgJaA9DCFK2SNoNhXJAlIaUUpRoFUvzaBZHQJ61vnkkrwx1fZQoaAZoCWgPQwiA1vz4CzByQJSGlFKUaBVNDwFoFkdAnrX+a4MF2XV9lChoBmgJaA9DCI+qJog68WxAlIaUUpRoFUv2aBZHQJ62wEX+ERJ1fZQoaAZoCWgPQwjJ6ev52kZwQJSGlFKUaBVL6mgWR0Cetv4ku6ErdX2UKGgGaAloD0MIPUM4Zpkjc0CUhpRSlGgVS+loFkdAnrcZJGvwE3V9lChoBmgJaA9DCLmpgebzRXBAlIaUUpRoFU0TAWgWR0Cet6HZK3/hdX2UKGgGaAloD0MILGNDN7vZcECUhpRSlGgVS/VoFkdAnrfuzyBkJHV9lChoBmgJaA9DCHCwNzEkkm9AlIaUUpRoFUvtaBZHQJ639+qioKl1fZQoaAZoCWgPQwhjm1Q01pZwQJSGlFKUaBVNFgFoFkdAnrh/QKKHf3V9lChoBmgJaA9DCJrudVJfUG5AlIaUUpRoFUv5aBZHQJ64k1zhgmZ1fZQoaAZoCWgPQwjCiH0CqDFxQJSGlFKUaBVNFwFoFkdAnriUI5YHPnV9lChoBmgJaA9DCAwfEVNi/XFAlIaUUpRoFUvvaBZHQJ7LN4ptrKx1fZQoaAZoCWgPQwj4cTRHVsJxQJSGlFKUaBVL52gWR0CezBMrmQr+dX2UKGgGaAloD0MIybCKN/IKckCUhpRSlGgVTQ8BaBZHQJ7MHdbgTAZ1fZQoaAZoCWgPQwj3WtB7Y+huQJSGlFKUaBVL8GgWR0CezCMwlByCdX2UKGgGaAloD0MIhc/WwcHdckCUhpRSlGgVS+xoFkdAnswo1He7+XV9lChoBmgJaA9DCNOiPsmdnnFAlIaUUpRoFU0AAWgWR0CezbcwQDmsdX2UKGgGaAloD0MIFxHF5A2Tb0CUhpRSlGgVTRsBaBZHQJ7Ouml67d11fZQoaAZoCWgPQwjjpDDv8R9wQJSGlFKUaBVL9GgWR0Cezs2R7qptdX2UKGgGaAloD0MICf8iaMzLb0CUhpRSlGgVS/loFkdAns7VTzd1uHV9lChoBmgJaA9DCEFn0qbq9nJAlIaUUpRoFUvaaBZHQJ7O9E7W/ah1fZQoaAZoCWgPQwh/pfPhWSlxQJSGlFKUaBVNEAFoFkdAns8uzQeFL3V9lChoBmgJaA9DCH3LnC6LP3BAlIaUUpRoFUvqaBZHQJ7PXYywfQt1fZQoaAZoCWgPQwiHbvYHyo9kwJSGlFKUaBVLnmgWR0Cez9buc+aCdX2UKGgGaAloD0MIDM11Gin8cUCUhpRSlGgVTQ8BaBZHQJ7P6Fg2Ift1fZQoaAZoCWgPQwgh5/1/nORuQJSGlFKUaBVL8mgWR0Ce0CYbsF+vdX2UKGgGaAloD0MIjxt+Nx28cECUhpRSlGgVS/JoFkdAntAmf5DZ13V9lChoBmgJaA9DCNmxEYiX5XFAlIaUUpRoFUv7aBZHQJ7QQpI+W4V1fZQoaAZoCWgPQwgvhQfN7nhwQJSGlFKUaBVL9WgWR0Ce0LLXL/0edX2UKGgGaAloD0MIvajdr8LLckCUhpRSlGgVS+ZoFkdAntE7dnCfpXV9lChoBmgJaA9DCC0kYHT5EHBAlIaUUpRoFUv4aBZHQJ7RqHP/rB11fZQoaAZoCWgPQwiNCMbBZcBwQJSGlFKUaBVL/2gWR0Ce0bk1dgOSdX2UKGgGaAloD0MIIF7XL1jocUCUhpRSlGgVS+1oFkdAntL5lJ6IFnV9lChoBmgJaA9DCII3pFFBDnNAlIaUUpRoFUvyaBZHQJ7UCKiwjdJ1fZQoaAZoCWgPQwjYLQJj/dVwQJSGlFKUaBVNAgFoFkdAntSUGVzIWHV9lChoBmgJaA9DCHVY4ZYPkHJAlIaUUpRoFUvyaBZHQJ7UvaM72ct1fZQoaAZoCWgPQwhol2992C1xQJSGlFKUaBVNCwFoFkdAntUMIeHSGHV9lChoBmgJaA9DCEfku5S6pHBAlIaUUpRoFU0TAWgWR0Ce1SPZZjhDdX2UKGgGaAloD0MIcGHdeLf9ckCUhpRSlGgVTQYBaBZHQJ7VOLZSNwR1fZQoaAZoCWgPQwju6H+51stxQJSGlFKUaBVL4GgWR0Ce1WQ3xWkrdX2UKGgGaAloD0MIPRBZpAnNb0CUhpRSlGgVS/1oFkdAntXezyBkJHV9lChoBmgJaA9DCOVFJuCXpHFAlIaUUpRoFUv6aBZHQJ7WONtIkJN1fZQoaAZoCWgPQwg/raI/dGBxQJSGlFKUaBVNBgFoFkdAntZFspG4JHV9lChoBmgJaA9DCD+toj+0k3BAlIaUUpRoFUv+aBZHQJ7WhH2AXl91fZQoaAZoCWgPQwiMvKyJRUJzQJSGlFKUaBVL6WgWR0Ce12xmkFfRdX2UKGgGaAloD0MI22rWGd/NcUCUhpRSlGgVTRABaBZHQJ7Xvz6JqIt1fZQoaAZoCWgPQwgKMZdU7QZxQJSGlFKUaBVL3mgWR0Ce18kMCtA+dX2UKGgGaAloD0MIFjQtsXLfcECUhpRSlGgVTSIBaBZHQJ7Zvm0VrRB1fZQoaAZoCWgPQwgqpz0l52NuQJSGlFKUaBVL9WgWR0Ce2lEpRXOodX2UKGgGaAloD0MIbsFSXcCZckCUhpRSlGgVS9toFkdAntxBMzuWr3V9lChoBmgJaA9DCC+JsyKqM3NAlIaUUpRoFUvmaBZHQJ7cYnmaH9F1fZQoaAZoCWgPQwiXx5qRQT1wQJSGlFKUaBVL82gWR0Ce3K5HEuQIdX2UKGgGaAloD0MIwFsgQbG4cECUhpRSlGgVTQoBaBZHQJ7czZ+QU6B1fZQoaAZoCWgPQwjCo40jFotxQJSGlFKUaBVL5WgWR0Ce3NcxCY1HdX2UKGgGaAloD0MIk1SmmANVcUCUhpRSlGgVS+FoFkdAntzg88s+V3V9lChoBmgJaA9DCPgzvFmD2nNAlIaUUpRoFUvfaBZHQJ7dTxUedTZ1fZQoaAZoCWgPQwi0BYTWw15yQJSGlFKUaBVL+WgWR0Ce3XDfFaStdX2UKGgGaAloD0MIX7LxYIslcECUhpRSlGgVS/FoFkdAnt6h6rvLHXV9lChoBmgJaA9DCHpwd9YujXBAlIaUUpRoFU0DAWgWR0Ce3vpgCwKTdX2UKGgGaAloD0MIVMcqpWdVdECUhpRSlGgVS9ZoFkdAnt8ldPci4nV9lChoBmgJaA9DCMxB0NGqqnFAlIaUUpRoFU0OAWgWR0Ce31c+JP69dX2UKGgGaAloD0MIVvMckW/acECUhpRSlGgVS/RoFkdAnt/WtZFG5XV9lChoBmgJaA9DCE33OqmvU3FAlIaUUpRoFUvyaBZHQJ7gK6mO2iN1fZQoaAZoCWgPQwir61BNychtQJSGlFKUaBVL8GgWR0Ce4i1HvttzdX2UKGgGaAloD0MIS8gHPRvCc0CUhpRSlGgVS/1oFkdAnuNA5Jbt7nV9lChoBmgJaA9DCCWuY1xxW3NAlIaUUpRoFUvXaBZHQJ7j0HdGiHt1fZQoaAZoCWgPQwiGyr+WV31yQJSGlFKUaBVL2WgWR0Ce5ESJTER8dX2UKGgGaAloD0MI30+Nly5wcUCUhpRSlGgVS/FoFkdAnuTVp0wJxHV9lChoBmgJaA9DCHef46MFU3FAlIaUUpRoFUvwaBZHQJ7k6jmCAc11fZQoaAZoCWgPQwhA+5EisnJvQJSGlFKUaBVL5mgWR0Ce5RvwmVqvdX2UKGgGaAloD0MI0O0ljdHjcECUhpRSlGgVS/9oFkdAnuVNnXd0rHV9lChoBmgJaA9DCBcq/1oeCHNAlIaUUpRoFU0cAWgWR0Ce5ZzfJmuldX2UKGgGaAloD0MIck2BzE6FckCUhpRSlGgVTQMBaBZHQJ7lsq8UVSJ1fZQoaAZoCWgPQwg+dhco6RNxQJSGlFKUaBVL7mgWR0Ce5g/iYLLIdX2UKGgGaAloD0MInyCx3b2xcUCUhpRSlGgVS+poFkdAnuZJo4+8oXV9lChoBmgJaA9DCE61FmahVXJAlIaUUpRoFUv+aBZHQJ7mlv0h/y51fZQoaAZoCWgPQwhzEHS0KjRwQJSGlFKUaBVL/WgWR0Ce5sRdQfp2dX2UKGgGaAloD0MIpl63CIyJbkCUhpRSlGgVS/JoFkdAnubUroW56XV9lChoBmgJaA9DCBjQC3cuakdAlIaUUpRoFUuqaBZHQJ7m2IZZSvV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cfda70f190110285b8eb6d93d372c34961a37158f87d5f4ca49cd2db11a106c
|
3 |
+
size 147328
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
CHANGED
@@ -3,20 +3,21 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,16 +48,16 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +70,7 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
@@ -86,7 +87,7 @@
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f021a2183a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f021a218430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f021a2184c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f021a218550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f021a2185e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f021a218670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f021a218700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f021a218790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f021a218820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f021a2188b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f021a218940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f021a2189d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f021a20ee10>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677410093913774506,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpROb3DhXC6CBtUuE04j7IObfI6HgN2NwAAgD8AAIA/s0NfPWA/nj5yIrs9MPKfvpXL5D2amac6AAAAAAAAAADm+jg99mRnPYU7ob6GwZ6+Y9hYvoKPZL0AAAAAAAAAAIBYK76RSqw/Oh4av+DoxL5QMpO+3cb2vgAAAAAAAAAA8+Isvqu1Qj88SpI+vVOnvg0fJ740C5k+AAAAAAAAAAAA4C46tCK5PiL/qzzMTpu+w+6lvDAbHz0AAAAAAAAAAGZuW723qoA/sB7xvMltwr6JESe+/iDQPQAAAAAAAAAAzdKfvGzXOz+wHgk+RufYvlMYMzxix8o9AAAAAAAAAAANv7C9qKq2P96jjb7DmKS+zyIXvgplhL4AAAAAAAAAAIC9Hz2wb/A+nt3Eva3Dob4a19q8+HxxvAAAAAAAAAAAZqqSu4khDj8ytnA9rE+/vqFWMT33Tcc9AAAAAAAAAAANbwq+0YZfP9Oabj4qg62+JSaYvbgLBz4AAAAAAAAAAE0MKD33mjw/eqydO1nnn76jydo8xZVaPQAAAAAAAAAAzbrivLXHnD8+umG8aXmwvniy3711/Va9AAAAAAAAAACz4K09/QCuP+KYvj7ra8S+5sQ5PlS4PD4AAAAAAAAAAM3eG75PJKI/Gh+lvtx8zb74d7m+DJ4lvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIezNqvkoZcUCUhpRSlIwBbJRL84wBdJRHQJ6uriZOSGJ1fZQoaAZoCWgPQwjrOel9I69yQJSGlFKUaBVNFwFoFkdAnq7VkUbkwXV9lChoBmgJaA9DCAJGlzeHjHJAlIaUUpRoFUvuaBZHQJ6vGbZvkzZ1fZQoaAZoCWgPQwh+5UF6yoJxQJSGlFKUaBVNBgFoFkdAnq9XDWK/EnV9lChoBmgJaA9DCIZY/RGG2XBAlIaUUpRoFUvhaBZHQJ6vbBN21Ul1fZQoaAZoCWgPQwjl0viFV1BxQJSGlFKUaBVL/2gWR0CesABo24usdX2UKGgGaAloD0MIoWmJlZHgcECUhpRSlGgVTQsBaBZHQJ6wbGrCFbp1fZQoaAZoCWgPQwgsZ++MtgRwQJSGlFKUaBVL62gWR0CesUhjOLR8dX2UKGgGaAloD0MISBXFq+zBc0CUhpRSlGgVTQQBaBZHQJ6xY36yjYZ1fZQoaAZoCWgPQwh+Uu3Tsb5wQJSGlFKUaBVNEAFoFkdAnrHHSF49o3V9lChoBmgJaA9DCL8K8N2mXXJAlIaUUpRoFUvxaBZHQJ6x5A0Kqn51fZQoaAZoCWgPQwgjL2tigTtxQJSGlFKUaBVNFwFoFkdAnrIyZrpJPXV9lChoBmgJaA9DCO2cZoF2YnBAlIaUUpRoFUv2aBZHQJ6yQKtxMnJ1fZQoaAZoCWgPQwg5Yi0+RYhyQJSGlFKUaBVL+WgWR0CeslyBTXJ6dX2UKGgGaAloD0MIy9k7o60ZckCUhpRSlGgVS+1oFkdAnrKKjafzz3V9lChoBmgJaA9DCF6DvvT2PzpAlIaUUpRoFUuwaBZHQJ6y0O/cnE51fZQoaAZoCWgPQwjYLJeNzuZuQJSGlFKUaBVL7WgWR0Ces4pQUHpsdX2UKGgGaAloD0MIa0QwDu5DcECUhpRSlGgVS+ZoFkdAnrPGVu76HnV9lChoBmgJaA9DCGglrfhG/HFAlIaUUpRoFUvmaBZHQJ60eHTI/7l1fZQoaAZoCWgPQwiv6qwWGGxwQJSGlFKUaBVL+mgWR0CetJvES/TLdX2UKGgGaAloD0MIz2bV5+r5cUCUhpRSlGgVS+9oFkdAnrSWovSMLnV9lChoBmgJaA9DCFK2SNoNhXJAlIaUUpRoFUvzaBZHQJ61vnkkrwx1fZQoaAZoCWgPQwiA1vz4CzByQJSGlFKUaBVNDwFoFkdAnrX+a4MF2XV9lChoBmgJaA9DCI+qJog68WxAlIaUUpRoFUv2aBZHQJ62wEX+ERJ1fZQoaAZoCWgPQwjJ6ev52kZwQJSGlFKUaBVL6mgWR0Cetv4ku6ErdX2UKGgGaAloD0MIPUM4Zpkjc0CUhpRSlGgVS+loFkdAnrcZJGvwE3V9lChoBmgJaA9DCLmpgebzRXBAlIaUUpRoFU0TAWgWR0Cet6HZK3/hdX2UKGgGaAloD0MILGNDN7vZcECUhpRSlGgVS/VoFkdAnrfuzyBkJHV9lChoBmgJaA9DCHCwNzEkkm9AlIaUUpRoFUvtaBZHQJ639+qioKl1fZQoaAZoCWgPQwhjm1Q01pZwQJSGlFKUaBVNFgFoFkdAnrh/QKKHf3V9lChoBmgJaA9DCJrudVJfUG5AlIaUUpRoFUv5aBZHQJ64k1zhgmZ1fZQoaAZoCWgPQwjCiH0CqDFxQJSGlFKUaBVNFwFoFkdAnriUI5YHPnV9lChoBmgJaA9DCAwfEVNi/XFAlIaUUpRoFUvvaBZHQJ7LN4ptrKx1fZQoaAZoCWgPQwj4cTRHVsJxQJSGlFKUaBVL52gWR0CezBMrmQr+dX2UKGgGaAloD0MIybCKN/IKckCUhpRSlGgVTQ8BaBZHQJ7MHdbgTAZ1fZQoaAZoCWgPQwj3WtB7Y+huQJSGlFKUaBVL8GgWR0CezCMwlByCdX2UKGgGaAloD0MIhc/WwcHdckCUhpRSlGgVS+xoFkdAnswo1He7+XV9lChoBmgJaA9DCNOiPsmdnnFAlIaUUpRoFU0AAWgWR0CezbcwQDmsdX2UKGgGaAloD0MIFxHF5A2Tb0CUhpRSlGgVTRsBaBZHQJ7Ouml67d11fZQoaAZoCWgPQwjjpDDv8R9wQJSGlFKUaBVL9GgWR0Cezs2R7qptdX2UKGgGaAloD0MICf8iaMzLb0CUhpRSlGgVS/loFkdAns7VTzd1uHV9lChoBmgJaA9DCEFn0qbq9nJAlIaUUpRoFUvaaBZHQJ7O9E7W/ah1fZQoaAZoCWgPQwh/pfPhWSlxQJSGlFKUaBVNEAFoFkdAns8uzQeFL3V9lChoBmgJaA9DCH3LnC6LP3BAlIaUUpRoFUvqaBZHQJ7PXYywfQt1fZQoaAZoCWgPQwiHbvYHyo9kwJSGlFKUaBVLnmgWR0Cez9buc+aCdX2UKGgGaAloD0MIDM11Gin8cUCUhpRSlGgVTQ8BaBZHQJ7P6Fg2Ift1fZQoaAZoCWgPQwgh5/1/nORuQJSGlFKUaBVL8mgWR0Ce0CYbsF+vdX2UKGgGaAloD0MIjxt+Nx28cECUhpRSlGgVS/JoFkdAntAmf5DZ13V9lChoBmgJaA9DCNmxEYiX5XFAlIaUUpRoFUv7aBZHQJ7QQpI+W4V1fZQoaAZoCWgPQwgvhQfN7nhwQJSGlFKUaBVL9WgWR0Ce0LLXL/0edX2UKGgGaAloD0MIvajdr8LLckCUhpRSlGgVS+ZoFkdAntE7dnCfpXV9lChoBmgJaA9DCC0kYHT5EHBAlIaUUpRoFUv4aBZHQJ7RqHP/rB11fZQoaAZoCWgPQwiNCMbBZcBwQJSGlFKUaBVL/2gWR0Ce0bk1dgOSdX2UKGgGaAloD0MIIF7XL1jocUCUhpRSlGgVS+1oFkdAntL5lJ6IFnV9lChoBmgJaA9DCII3pFFBDnNAlIaUUpRoFUvyaBZHQJ7UCKiwjdJ1fZQoaAZoCWgPQwjYLQJj/dVwQJSGlFKUaBVNAgFoFkdAntSUGVzIWHV9lChoBmgJaA9DCHVY4ZYPkHJAlIaUUpRoFUvyaBZHQJ7UvaM72ct1fZQoaAZoCWgPQwhol2992C1xQJSGlFKUaBVNCwFoFkdAntUMIeHSGHV9lChoBmgJaA9DCEfku5S6pHBAlIaUUpRoFU0TAWgWR0Ce1SPZZjhDdX2UKGgGaAloD0MIcGHdeLf9ckCUhpRSlGgVTQYBaBZHQJ7VOLZSNwR1fZQoaAZoCWgPQwju6H+51stxQJSGlFKUaBVL4GgWR0Ce1WQ3xWkrdX2UKGgGaAloD0MIPRBZpAnNb0CUhpRSlGgVS/1oFkdAntXezyBkJHV9lChoBmgJaA9DCOVFJuCXpHFAlIaUUpRoFUv6aBZHQJ7WONtIkJN1fZQoaAZoCWgPQwg/raI/dGBxQJSGlFKUaBVNBgFoFkdAntZFspG4JHV9lChoBmgJaA9DCD+toj+0k3BAlIaUUpRoFUv+aBZHQJ7WhH2AXl91fZQoaAZoCWgPQwiMvKyJRUJzQJSGlFKUaBVL6WgWR0Ce12xmkFfRdX2UKGgGaAloD0MI22rWGd/NcUCUhpRSlGgVTRABaBZHQJ7Xvz6JqIt1fZQoaAZoCWgPQwgKMZdU7QZxQJSGlFKUaBVL3mgWR0Ce18kMCtA+dX2UKGgGaAloD0MIFjQtsXLfcECUhpRSlGgVTSIBaBZHQJ7Zvm0VrRB1fZQoaAZoCWgPQwgqpz0l52NuQJSGlFKUaBVL9WgWR0Ce2lEpRXOodX2UKGgGaAloD0MIbsFSXcCZckCUhpRSlGgVS9toFkdAntxBMzuWr3V9lChoBmgJaA9DCC+JsyKqM3NAlIaUUpRoFUvmaBZHQJ7cYnmaH9F1fZQoaAZoCWgPQwiXx5qRQT1wQJSGlFKUaBVL82gWR0Ce3K5HEuQIdX2UKGgGaAloD0MIwFsgQbG4cECUhpRSlGgVTQoBaBZHQJ7czZ+QU6B1fZQoaAZoCWgPQwjCo40jFotxQJSGlFKUaBVL5WgWR0Ce3NcxCY1HdX2UKGgGaAloD0MIk1SmmANVcUCUhpRSlGgVS+FoFkdAntzg88s+V3V9lChoBmgJaA9DCPgzvFmD2nNAlIaUUpRoFUvfaBZHQJ7dTxUedTZ1fZQoaAZoCWgPQwi0BYTWw15yQJSGlFKUaBVL+WgWR0Ce3XDfFaStdX2UKGgGaAloD0MIX7LxYIslcECUhpRSlGgVS/FoFkdAnt6h6rvLHXV9lChoBmgJaA9DCHpwd9YujXBAlIaUUpRoFU0DAWgWR0Ce3vpgCwKTdX2UKGgGaAloD0MIVMcqpWdVdECUhpRSlGgVS9ZoFkdAnt8ldPci4nV9lChoBmgJaA9DCMxB0NGqqnFAlIaUUpRoFU0OAWgWR0Ce31c+JP69dX2UKGgGaAloD0MIVvMckW/acECUhpRSlGgVS/RoFkdAnt/WtZFG5XV9lChoBmgJaA9DCE33OqmvU3FAlIaUUpRoFUvyaBZHQJ7gK6mO2iN1fZQoaAZoCWgPQwir61BNychtQJSGlFKUaBVL8GgWR0Ce4i1HvttzdX2UKGgGaAloD0MIS8gHPRvCc0CUhpRSlGgVS/1oFkdAnuNA5Jbt7nV9lChoBmgJaA9DCCWuY1xxW3NAlIaUUpRoFUvXaBZHQJ7j0HdGiHt1fZQoaAZoCWgPQwiGyr+WV31yQJSGlFKUaBVL2WgWR0Ce5ESJTER8dX2UKGgGaAloD0MI30+Nly5wcUCUhpRSlGgVS/FoFkdAnuTVp0wJxHV9lChoBmgJaA9DCHef46MFU3FAlIaUUpRoFUvwaBZHQJ7k6jmCAc11fZQoaAZoCWgPQwhA+5EisnJvQJSGlFKUaBVL5mgWR0Ce5RvwmVqvdX2UKGgGaAloD0MI0O0ljdHjcECUhpRSlGgVS/9oFkdAnuVNnXd0rHV9lChoBmgJaA9DCBcq/1oeCHNAlIaUUpRoFU0cAWgWR0Ce5ZzfJmuldX2UKGgGaAloD0MIck2BzE6FckCUhpRSlGgVTQMBaBZHQJ7lsq8UVSJ1fZQoaAZoCWgPQwg+dhco6RNxQJSGlFKUaBVL7mgWR0Ce5g/iYLLIdX2UKGgGaAloD0MInyCx3b2xcUCUhpRSlGgVS+poFkdAnuZJo4+8oXV9lChoBmgJaA9DCE61FmahVXJAlIaUUpRoFUv+aBZHQJ7mlv0h/y51fZQoaAZoCWgPQwhzEHS0KjRwQJSGlFKUaBVL/WgWR0Ce5sRdQfp2dX2UKGgGaAloD0MIpl63CIyJbkCUhpRSlGgVS/JoFkdAnubUroW56XV9lChoBmgJaA9DCBjQC3cuakdAlIaUUpRoFUuqaBZHQJ7m2IZZSvV1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8b735d833bf2d32b69b0b7d03a567c753c28ff88921339bf0f20505f5db4dea
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:619bbb8a1194e67cbaa6402b0b4a19ee8a2056287524ce8ef820feb717e6d161
|
3 |
+
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.10.
|
2 |
-
Python: 3.8.
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch: 1.13.
|
5 |
-
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 276.077035492655, "std_reward": 24.106659176811984, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T11:28:16.159894"}
|