RedRawMeat
commited on
Commit
•
72a9bdc
1
Parent(s):
67fb75f
End of training
Browse files
README.md
CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 1.
|
19 |
-
- Answer: {'precision': 0.
|
20 |
-
- Header: {'precision': 0.
|
21 |
-
- Question: {'precision': 0.
|
22 |
-
- Overall Precision: 0.
|
23 |
-
- Overall Recall: 0.
|
24 |
-
- Overall F1: 0.
|
25 |
-
- Overall Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -47,25 +47,14 @@ The following hyperparameters were used during training:
|
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
-
- training_steps:
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch
|
56 |
-
|
57 |
-
| 0.
|
58 |
-
| 0.0411 | 21.05 | 400 | 1.3412 | {'precision': 0.8213507625272332, 'recall': 0.9228886168910648, 'f1': 0.869164265129683, 'number': 817} | {'precision': 0.48936170212765956, 'recall': 0.5798319327731093, 'f1': 0.5307692307692307, 'number': 119} | {'precision': 0.9178217821782179, 'recall': 0.8607242339832869, 'f1': 0.8883564925730715, 'number': 1077} | 0.8458 | 0.8693 | 0.8574 | 0.8058 |
|
59 |
-
| 0.013 | 31.58 | 600 | 1.3818 | {'precision': 0.8340807174887892, 'recall': 0.9106487148102815, 'f1': 0.8706846108835576, 'number': 817} | {'precision': 0.5595238095238095, 'recall': 0.3949579831932773, 'f1': 0.4630541871921182, 'number': 119} | {'precision': 0.8754355400696864, 'recall': 0.9331476323119777, 'f1': 0.903370786516854, 'number': 1077} | 0.8456 | 0.8922 | 0.8683 | 0.8002 |
|
60 |
-
| 0.0079 | 42.11 | 800 | 1.5417 | {'precision': 0.8312849162011173, 'recall': 0.9106487148102815, 'f1': 0.869158878504673, 'number': 817} | {'precision': 0.5789473684210527, 'recall': 0.5546218487394958, 'f1': 0.5665236051502146, 'number': 119} | {'precision': 0.883441258094357, 'recall': 0.8867223769730733, 'f1': 0.8850787766450416, 'number': 1077} | 0.8445 | 0.8768 | 0.8603 | 0.7787 |
|
61 |
-
| 0.0042 | 52.63 | 1000 | 1.7697 | {'precision': 0.8411111111111111, 'recall': 0.9265605875152999, 'f1': 0.881770529994176, 'number': 817} | {'precision': 0.6363636363636364, 'recall': 0.35294117647058826, 'f1': 0.4540540540540541, 'number': 119} | {'precision': 0.8674176776429809, 'recall': 0.9294336118848654, 'f1': 0.897355445988346, 'number': 1077} | 0.8491 | 0.8942 | 0.8710 | 0.7868 |
|
62 |
-
| 0.0025 | 63.16 | 1200 | 1.6700 | {'precision': 0.8520231213872832, 'recall': 0.9020807833537332, 'f1': 0.8763376932223542, 'number': 817} | {'precision': 0.5434782608695652, 'recall': 0.42016806722689076, 'f1': 0.4739336492890995, 'number': 119} | {'precision': 0.8812330009066183, 'recall': 0.9025069637883009, 'f1': 0.891743119266055, 'number': 1077} | 0.8539 | 0.8738 | 0.8637 | 0.7795 |
|
63 |
-
| 0.0013 | 73.68 | 1400 | 1.8217 | {'precision': 0.8444193912063134, 'recall': 0.9167686658506732, 'f1': 0.8791079812206573, 'number': 817} | {'precision': 0.5813953488372093, 'recall': 0.42016806722689076, 'f1': 0.48780487804878053, 'number': 119} | {'precision': 0.8940639269406393, 'recall': 0.9090064995357474, 'f1': 0.9014732965009209, 'number': 1077} | 0.8598 | 0.8833 | 0.8714 | 0.7878 |
|
64 |
-
| 0.0007 | 84.21 | 1600 | 1.7507 | {'precision': 0.8437146092865232, 'recall': 0.9118727050183598, 'f1': 0.8764705882352941, 'number': 817} | {'precision': 0.6794871794871795, 'recall': 0.44537815126050423, 'f1': 0.5380710659898478, 'number': 119} | {'precision': 0.8888888888888888, 'recall': 0.9210770659238626, 'f1': 0.9046967624259006, 'number': 1077} | 0.8618 | 0.8892 | 0.8753 | 0.7901 |
|
65 |
-
| 0.0006 | 94.74 | 1800 | 1.7257 | {'precision': 0.8539976825028969, 'recall': 0.9020807833537332, 'f1': 0.8773809523809523, 'number': 817} | {'precision': 0.6344086021505376, 'recall': 0.4957983193277311, 'f1': 0.5566037735849056, 'number': 119} | {'precision': 0.8943014705882353, 'recall': 0.903435468895079, 'f1': 0.8988452655889145, 'number': 1077} | 0.8655 | 0.8788 | 0.8721 | 0.7922 |
|
66 |
-
| 0.0004 | 105.26 | 2000 | 1.7648 | {'precision': 0.8672150411280846, 'recall': 0.9033047735618115, 'f1': 0.8848920863309352, 'number': 817} | {'precision': 0.6666666666666666, 'recall': 0.48739495798319327, 'f1': 0.5631067961165048, 'number': 119} | {'precision': 0.9055912007332723, 'recall': 0.9173630454967502, 'f1': 0.911439114391144, 'number': 1077} | 0.8793 | 0.8862 | 0.8827 | 0.8009 |
|
67 |
-
| 0.0003 | 115.79 | 2200 | 1.7698 | {'precision': 0.8616279069767442, 'recall': 0.9069767441860465, 'f1': 0.8837209302325582, 'number': 817} | {'precision': 0.6373626373626373, 'recall': 0.48739495798319327, 'f1': 0.5523809523809524, 'number': 119} | {'precision': 0.9104339796860572, 'recall': 0.9155060352831941, 'f1': 0.9129629629629629, 'number': 1077} | 0.8776 | 0.8867 | 0.8821 | 0.8007 |
|
68 |
-
| 0.0003 | 126.32 | 2400 | 1.7623 | {'precision': 0.8596287703016241, 'recall': 0.9069767441860465, 'f1': 0.882668254913639, 'number': 817} | {'precision': 0.5769230769230769, 'recall': 0.5042016806722689, 'f1': 0.5381165919282511, 'number': 119} | {'precision': 0.9018348623853211, 'recall': 0.9127205199628597, 'f1': 0.9072450392247347, 'number': 1077} | 0.8677 | 0.8862 | 0.8769 | 0.7973 |
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.2229
|
19 |
+
- Answer: {'precision': 0.8436781609195402, 'recall': 0.8984088127294981, 'f1': 0.8701837581505631, 'number': 817}
|
20 |
+
- Header: {'precision': 0.5858585858585859, 'recall': 0.48739495798319327, 'f1': 0.5321100917431192, 'number': 119}
|
21 |
+
- Question: {'precision': 0.8876712328767123, 'recall': 0.9025069637883009, 'f1': 0.8950276243093923, 'number': 1077}
|
22 |
+
- Overall Precision: 0.8547
|
23 |
+
- Overall Recall: 0.8763
|
24 |
+
- Overall F1: 0.8653
|
25 |
+
- Overall Accuracy: 0.7896
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
+
- training_steps: 250
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 0.108 | 10.53 | 200 | 1.2229 | {'precision': 0.8436781609195402, 'recall': 0.8984088127294981, 'f1': 0.8701837581505631, 'number': 817} | {'precision': 0.5858585858585859, 'recall': 0.48739495798319327, 'f1': 0.5321100917431192, 'number': 119} | {'precision': 0.8876712328767123, 'recall': 0.9025069637883009, 'f1': 0.8950276243093923, 'number': 1077} | 0.8547 | 0.8763 | 0.8653 | 0.7896 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
logs/events.out.tfevents.1705774171.445748d066d7.4026.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f251b705bf940a2c9483df6730fe4e36389bc25dd5c9435d524f8697352cec5c
|
3 |
+
size 5761
|
logs/events.out.tfevents.1705774316.445748d066d7.4026.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83786592957899f1cfc159a97b8a9da69a0bea2e8a1956a2ea0063d9d9d8d7d3
|
3 |
+
size 592
|