update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: farsi_lastname_classifier_4
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# farsi_lastname_classifier_4
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2337
|
20 |
+
- Accuracy: 0.96
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 128
|
41 |
+
- eval_batch_size: 256
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- num_epochs: 15
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 12 | 0.5673 | 0.836 |
|
54 |
+
| No log | 2.0 | 24 | 0.4052 | 0.868 |
|
55 |
+
| No log | 3.0 | 36 | 0.2211 | 0.932 |
|
56 |
+
| No log | 4.0 | 48 | 0.2488 | 0.926 |
|
57 |
+
| No log | 5.0 | 60 | 0.1490 | 0.954 |
|
58 |
+
| No log | 6.0 | 72 | 0.1464 | 0.968 |
|
59 |
+
| No log | 7.0 | 84 | 0.1923 | 0.954 |
|
60 |
+
| No log | 8.0 | 96 | 0.2070 | 0.96 |
|
61 |
+
| No log | 9.0 | 108 | 0.2055 | 0.962 |
|
62 |
+
| No log | 10.0 | 120 | 0.2436 | 0.942 |
|
63 |
+
| No log | 11.0 | 132 | 0.2173 | 0.96 |
|
64 |
+
| No log | 12.0 | 144 | 0.2342 | 0.956 |
|
65 |
+
| No log | 13.0 | 156 | 0.2337 | 0.962 |
|
66 |
+
| No log | 14.0 | 168 | 0.2332 | 0.96 |
|
67 |
+
| No log | 15.0 | 180 | 0.2337 | 0.96 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.24.0
|
73 |
+
- Pytorch 1.12.1+cu113
|
74 |
+
- Datasets 2.6.1
|
75 |
+
- Tokenizers 0.13.2
|