RajMoodley
commited on
Commit
·
124acac
1
Parent(s):
0eaf8f4
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.48 +/- 1.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f1448e139babf81dfbddd32f2d25356c719799995cf88f502850854e7c49359
|
3 |
+
size 108107
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fafb0924940>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fafb091ec00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674031117384836771,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA66nWPoEVaby/RxE/66nWPoEVaby/RxE/66nWPoEVaby/RxE/66nWPoEVaby/RxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfiGHv0QdUr/aiZ4/7DF5P2ipqb7bVG4+7g7evSQQ3b9n0ce+j1SNP3ACyj/RPrM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTrrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTrrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTrrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41926512 -0.01422632 0.567501 ]\n [ 0.41926512 -0.01422632 0.567501 ]\n [ 0.41926512 -0.01422632 0.567501 ]\n [ 0.41926512 -0.01422632 0.567501 ]]",
|
60 |
+
"desired_goal": "[[-1.0557096 -0.82075906 1.2385819 ]\n [ 0.973418 -0.3313706 0.23274557]\n [-0.10842691 -1.7270551 -0.3902695 ]\n [ 1.104143 1.5781994 1.4003545 ]]",
|
61 |
+
"observation": "[[ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]\n [ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]\n [ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]\n [ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxR4YPvNzHD3sBFA+Vt+kvacGab1oJ/Q9FAbrvHUSwb0FWx4+JTxCPOKJuT3urRU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.14855488 0.03819652 0.20314378]\n [-0.0805041 -0.05689111 0.11921579]\n [-0.02868942 -0.09427349 0.15464409]\n [ 0.01185516 0.09059502 0.03654283]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICFVq9kBrBsCUhpRSlIwBbJRLMowBdJRHQKiUmtg8bJh1fZQoaAZoCWgPQwg10eejjPgKwJSGlFKUaBVLMmgWR0ColF11wHZ9dX2UKGgGaAloD0MIHogs0sS7D8CUhpRSlGgVSzJoFkdAqJQgB/7SA3V9lChoBmgJaA9DCKUWSianNgnAlIaUUpRoFUsyaBZHQKiT5S7Xg+B1fZQoaAZoCWgPQwjzGyYapCD3v5SGlFKUaBVLMmgWR0Colar1EmY0dX2UKGgGaAloD0MISGqhZHKqB8CUhpRSlGgVSzJoFkdAqJVttwaR6nV9lChoBmgJaA9DCAAbECGu3A3AlIaUUpRoFUsyaBZHQKiVMDgZTAF1fZQoaAZoCWgPQwhosRTJVyIEwJSGlFKUaBVLMmgWR0ColPUsFt9AdX2UKGgGaAloD0MIUnx8QnYOFcCUhpRSlGgVSzJoFkdAqJa6k690zXV9lChoBmgJaA9DCLL1DOGY5RLAlIaUUpRoFUsyaBZHQKiWfVmSQo11fZQoaAZoCWgPQwhtAgzLn28VwJSGlFKUaBVLMmgWR0Colj/FrEcbdX2UKGgGaAloD0MIZ0Rpb/AlDMCUhpRSlGgVSzJoFkdAqJYEw1zhgnV9lChoBmgJaA9DCAX9hR4xegnAlIaUUpRoFUsyaBZHQKiX0ZjQRf51fZQoaAZoCWgPQwiz7Elgc44KwJSGlFKUaBVLMmgWR0Col5RQSBbwdX2UKGgGaAloD0MIbZBJRs4CCcCUhpRSlGgVSzJoFkdAqJdWwFC9iHV9lChoBmgJaA9DCB2s/3OYLwrAlIaUUpRoFUsyaBZHQKiXG75Ec811fZQoaAZoCWgPQwhXsmMjEG8PwJSGlFKUaBVLMmgWR0ComN6jesPrdX2UKGgGaAloD0MIs2Dij6JuD8CUhpRSlGgVSzJoFkdAqJihZbILgHV9lChoBmgJaA9DCPw2xHjNWxHAlIaUUpRoFUsyaBZHQKiYY+B6KLt1fZQoaAZoCWgPQwijkGRW7zALwJSGlFKUaBVLMmgWR0ComClL39JjdX2UKGgGaAloD0MIWU3XE12XC8CUhpRSlGgVSzJoFkdAqJoFv863iXV9lChoBmgJaA9DCBEY6xuYzBPAlIaUUpRoFUsyaBZHQKiZyHaews51fZQoaAZoCWgPQwj1Lt6P2w8SwJSGlFKUaBVLMmgWR0ComYsnZ00WdX2UKGgGaAloD0MIHJqy0w9KEMCUhpRSlGgVSzJoFkdAqJlQTfzjFXV9lChoBmgJaA9DCNxKr83GmhLAlIaUUpRoFUsyaBZHQKibGoOx0Mh1fZQoaAZoCWgPQwie6/twkNADwJSGlFKUaBVLMmgWR0Comt083dbgdX2UKGgGaAloD0MIoN0hxQB5EsCUhpRSlGgVSzJoFkdAqJqfrGBFu3V9lChoBmgJaA9DCBsrMc9KWgnAlIaUUpRoFUsyaBZHQKiaZMlkYoB1fZQoaAZoCWgPQwh4eqUsQywRwJSGlFKUaBVLMmgWR0ConCMEA5q/dX2UKGgGaAloD0MIFHZR9MDnAMCUhpRSlGgVSzJoFkdAqJvl3ljmS3V9lChoBmgJaA9DCL3EWKZf0hPAlIaUUpRoFUsyaBZHQKibqCuEEkl1fZQoaAZoCWgPQwi6nui68CMPwJSGlFKUaBVLMmgWR0Com20yxiXqdX2UKGgGaAloD0MITl/P1yyXD8CUhpRSlGgVSzJoFkdAqJ0n5DZ13nV9lChoBmgJaA9DCH8UdeYeYhPAlIaUUpRoFUsyaBZHQKic6pWFN+N1fZQoaAZoCWgPQwi7XpoiwAkTwJSGlFKUaBVLMmgWR0ConKz4tYjjdX2UKGgGaAloD0MIA137AnohCcCUhpRSlGgVSzJoFkdAqJxx+rlvInV9lChoBmgJaA9DCH1aRX9o5gLAlIaUUpRoFUsyaBZHQKieMLtu1nd1fZQoaAZoCWgPQwgWodgKmrYJwJSGlFKUaBVLMmgWR0ConfOAI6bOdX2UKGgGaAloD0MIwhiRKLRs/L+UhpRSlGgVSzJoFkdAqJ22Po3aSXV9lChoBmgJaA9DCAfRWtHmOAvAlIaUUpRoFUsyaBZHQKide4y44Id1fZQoaAZoCWgPQwi7mdGPhtMNwJSGlFKUaBVLMmgWR0Con0eoUBXCdX2UKGgGaAloD0MI1h9hGLAEEcCUhpRSlGgVSzJoFkdAqJ8KY9gWrXV9lChoBmgJaA9DCA6D+StkbgrAlIaUUpRoFUsyaBZHQKiezONYKY11fZQoaAZoCWgPQwjLaOTzikcRwJSGlFKUaBVLMmgWR0ConpHxz7uVdX2UKGgGaAloD0MIbK8FvTfG/7+UhpRSlGgVSzJoFkdAqKBYrvsqrnV9lChoBmgJaA9DCNkh/mFLjxLAlIaUUpRoFUsyaBZHQKigG3b212J1fZQoaAZoCWgPQwjkFB3J5R8OwJSGlFKUaBVLMmgWR0Con93qiXY2dX2UKGgGaAloD0MIkpGzsKc9D8CUhpRSlGgVSzJoFkdAqJ+jF0gbInV9lChoBmgJaA9DCMsPXOUJZAXAlIaUUpRoFUsyaBZHQKihaL9deIF1fZQoaAZoCWgPQwgydsJLcMoDwJSGlFKUaBVLMmgWR0CooSuZTho/dX2UKGgGaAloD0MIea7vw0HCBMCUhpRSlGgVSzJoFkdAqKDuCyyD7XV9lChoBmgJaA9DCELooEs4BBDAlIaUUpRoFUsyaBZHQKigsv4dp7F1fZQoaAZoCWgPQwjKpfELrxQVwJSGlFKUaBVLMmgWR0Coonw1BMSLdX2UKGgGaAloD0MIuY5xxcVxDMCUhpRSlGgVSzJoFkdAqKI/Dcdo4HV9lChoBmgJaA9DCCQNbmsLbwTAlIaUUpRoFUsyaBZHQKiiAa5wwTN1fZQoaAZoCWgPQwiFe2XeqksUwJSGlFKUaBVLMmgWR0CoocbXHzYmdX2UKGgGaAloD0MI/wOsVbt2FcCUhpRSlGgVSzJoFkdAqKOlHFxXGXV9lChoBmgJaA9DCGkaFM0D+A7AlIaUUpRoFUsyaBZHQKijaHP/rB11fZQoaAZoCWgPQwja5Vsf1vsPwJSGlFKUaBVLMmgWR0CooyriuMdcdX2UKGgGaAloD0MI4qsdxTlqBMCUhpRSlGgVSzJoFkdAqKLv84xUN3V9lChoBmgJaA9DCJRsdTkl0BXAlIaUUpRoFUsyaBZHQKikwUuctoV1fZQoaAZoCWgPQwjlCu9yEb8KwJSGlFKUaBVLMmgWR0CopIQDeTFEdX2UKGgGaAloD0MIYviImBJpBsCUhpRSlGgVSzJoFkdAqKRGbkOqenV9lChoBmgJaA9DCJimCHB6dw3AlIaUUpRoFUsyaBZHQKikC6MBIWh1fZQoaAZoCWgPQwjKFd7lIn4IwJSGlFKUaBVLMmgWR0CopdTRYzSDdX2UKGgGaAloD0MIUg/R6A4iF8CUhpRSlGgVSzJoFkdAqKWXkHUtqnV9lChoBmgJaA9DCGmoUUgyq/6/lIaUUpRoFUsyaBZHQKilWe8wpON1fZQoaAZoCWgPQwhViEfi5ckNwJSGlFKUaBVLMmgWR0CopR8YQ8OkdX2UKGgGaAloD0MIAyfbwB0IAsCUhpRSlGgVSzJoFkdAqKboOFxn4HV9lChoBmgJaA9DCJ+tg4O9SRDAlIaUUpRoFUsyaBZHQKimqxPfsNV1fZQoaAZoCWgPQwjekbHa/E8VwJSGlFKUaBVLMmgWR0Copm2YfGModX2UKGgGaAloD0MICMkCJnAbE8CUhpRSlGgVSzJoFkdAqKYyoMrmQ3V9lChoBmgJaA9DCCUjZ2FP2wPAlIaUUpRoFUsyaBZHQKioAT1TR6Z1fZQoaAZoCWgPQwg1RBX+DI8JwJSGlFKUaBVLMmgWR0Cop8QNkOI7dX2UKGgGaAloD0MI8tO4N7/hDMCUhpRSlGgVSzJoFkdAqKeGjmCAc3V9lChoBmgJaA9DCEeQSrGjsQrAlIaUUpRoFUsyaBZHQKinS/5+H8F1fZQoaAZoCWgPQwgnT1lN11MEwJSGlFKUaBVLMmgWR0CoqQyfUWl/dX2UKGgGaAloD0MItaUO8npAE8CUhpRSlGgVSzJoFkdAqKjPUMG5c3V9lChoBmgJaA9DCOM3hZUKehPAlIaUUpRoFUsyaBZHQKiokbxVhkR1fZQoaAZoCWgPQwjItDaN7aUSwJSGlFKUaBVLMmgWR0CoqFbLEDQrdX2UKGgGaAloD0MIxjL9EvGGF8CUhpRSlGgVSzJoFkdAqKob9CNS63V9lChoBmgJaA9DCLiwbrw7ohXAlIaUUpRoFUsyaBZHQKip3qrzXjF1fZQoaAZoCWgPQwjO+pRjsvgUwJSGlFKUaBVLMmgWR0CoqaFLnLaFdX2UKGgGaAloD0MIYvay7bQ1AcCUhpRSlGgVSzJoFkdAqKlmWrwOOXV9lChoBmgJaA9DCOfhBKbTOhHAlIaUUpRoFUsyaBZHQKirLr8iwB51fZQoaAZoCWgPQwhDVrd6TjoOwJSGlFKUaBVLMmgWR0CoqvFtKqXGdX2UKGgGaAloD0MIo8wGmWRUEMCUhpRSlGgVSzJoFkdAqKqz5bhWHXV9lChoBmgJaA9DCBiWP98WTAzAlIaUUpRoFUsyaBZHQKiqePxQSBd1fZQoaAZoCWgPQwhTknU4usoNwJSGlFKUaBVLMmgWR0CorEWRaHKwdX2UKGgGaAloD0MIWyVYHM7cFcCUhpRSlGgVSzJoFkdAqKwIPbwjMXV9lChoBmgJaA9DCJYEqKll6/e/lIaUUpRoFUsyaBZHQKiryqlP8AJ1fZQoaAZoCWgPQwja5sb0hIUHwJSGlFKUaBVLMmgWR0Coq4+1SflIdX2UKGgGaAloD0MIIZOMnIXtEcCUhpRSlGgVSzJoFkdAqK1MjJMg2nV9lChoBmgJaA9DCIE9JlKabQ/AlIaUUpRoFUsyaBZHQKitD8+A3DN1fZQoaAZoCWgPQwhTB3k9mNQPwJSGlFKUaBVLMmgWR0CorNLvTgEVdX2UKGgGaAloD0MI3bbvUX8dEcCUhpRSlGgVSzJoFkdAqKyYJZ4fOnV9lChoBmgJaA9DCOePaW0aGwXAlIaUUpRoFUsyaBZHQKiua9sabWp1fZQoaAZoCWgPQwjAP6VKlP0NwJSGlFKUaBVLMmgWR0Cori8bR4QjdX2UKGgGaAloD0MIHmyx22eVFcCUhpRSlGgVSzJoFkdAqK3xsqJ/G3V9lChoBmgJaA9DCJ56pMFtjRPAlIaUUpRoFUsyaBZHQKittuc+aBt1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6c28cb37344b6708b954dc16a3178c8347ddb352a1238a5236f1c07b8343b5e
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cca86a3e161c1c15500b54724562de5c9131f2b1941d4808c277c9f8a1c98b0
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fafb0924940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fafb091ec00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674031117384836771, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA66nWPoEVaby/RxE/66nWPoEVaby/RxE/66nWPoEVaby/RxE/66nWPoEVaby/RxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfiGHv0QdUr/aiZ4/7DF5P2ipqb7bVG4+7g7evSQQ3b9n0ce+j1SNP3ACyj/RPrM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTrrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTrrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTrrqdY+gRVpvL9HET+1XJ87m+BhuzMNDTqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41926512 -0.01422632 0.567501 ]\n [ 0.41926512 -0.01422632 0.567501 ]\n [ 0.41926512 -0.01422632 0.567501 ]\n [ 0.41926512 -0.01422632 0.567501 ]]", "desired_goal": "[[-1.0557096 -0.82075906 1.2385819 ]\n [ 0.973418 -0.3313706 0.23274557]\n [-0.10842691 -1.7270551 -0.3902695 ]\n [ 1.104143 1.5781994 1.4003545 ]]", "observation": "[[ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]\n [ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]\n [ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]\n [ 4.1926512e-01 -1.4226318e-02 5.6750101e-01 4.8633465e-03\n -3.4466151e-03 5.3806900e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxR4YPvNzHD3sBFA+Vt+kvacGab1oJ/Q9FAbrvHUSwb0FWx4+JTxCPOKJuT3urRU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14855488 0.03819652 0.20314378]\n [-0.0805041 -0.05689111 0.11921579]\n [-0.02868942 -0.09427349 0.15464409]\n [ 0.01185516 0.09059502 0.03654283]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICFVq9kBrBsCUhpRSlIwBbJRLMowBdJRHQKiUmtg8bJh1fZQoaAZoCWgPQwg10eejjPgKwJSGlFKUaBVLMmgWR0ColF11wHZ9dX2UKGgGaAloD0MIHogs0sS7D8CUhpRSlGgVSzJoFkdAqJQgB/7SA3V9lChoBmgJaA9DCKUWSianNgnAlIaUUpRoFUsyaBZHQKiT5S7Xg+B1fZQoaAZoCWgPQwjzGyYapCD3v5SGlFKUaBVLMmgWR0Colar1EmY0dX2UKGgGaAloD0MISGqhZHKqB8CUhpRSlGgVSzJoFkdAqJVttwaR6nV9lChoBmgJaA9DCAAbECGu3A3AlIaUUpRoFUsyaBZHQKiVMDgZTAF1fZQoaAZoCWgPQwhosRTJVyIEwJSGlFKUaBVLMmgWR0ColPUsFt9AdX2UKGgGaAloD0MIUnx8QnYOFcCUhpRSlGgVSzJoFkdAqJa6k690zXV9lChoBmgJaA9DCLL1DOGY5RLAlIaUUpRoFUsyaBZHQKiWfVmSQo11fZQoaAZoCWgPQwhtAgzLn28VwJSGlFKUaBVLMmgWR0Colj/FrEcbdX2UKGgGaAloD0MIZ0Rpb/AlDMCUhpRSlGgVSzJoFkdAqJYEw1zhgnV9lChoBmgJaA9DCAX9hR4xegnAlIaUUpRoFUsyaBZHQKiX0ZjQRf51fZQoaAZoCWgPQwiz7Elgc44KwJSGlFKUaBVLMmgWR0Col5RQSBbwdX2UKGgGaAloD0MIbZBJRs4CCcCUhpRSlGgVSzJoFkdAqJdWwFC9iHV9lChoBmgJaA9DCB2s/3OYLwrAlIaUUpRoFUsyaBZHQKiXG75Ec811fZQoaAZoCWgPQwhXsmMjEG8PwJSGlFKUaBVLMmgWR0ComN6jesPrdX2UKGgGaAloD0MIs2Dij6JuD8CUhpRSlGgVSzJoFkdAqJihZbILgHV9lChoBmgJaA9DCPw2xHjNWxHAlIaUUpRoFUsyaBZHQKiYY+B6KLt1fZQoaAZoCWgPQwijkGRW7zALwJSGlFKUaBVLMmgWR0ComClL39JjdX2UKGgGaAloD0MIWU3XE12XC8CUhpRSlGgVSzJoFkdAqJoFv863iXV9lChoBmgJaA9DCBEY6xuYzBPAlIaUUpRoFUsyaBZHQKiZyHaews51fZQoaAZoCWgPQwj1Lt6P2w8SwJSGlFKUaBVLMmgWR0ComYsnZ00WdX2UKGgGaAloD0MIHJqy0w9KEMCUhpRSlGgVSzJoFkdAqJlQTfzjFXV9lChoBmgJaA9DCNxKr83GmhLAlIaUUpRoFUsyaBZHQKibGoOx0Mh1fZQoaAZoCWgPQwie6/twkNADwJSGlFKUaBVLMmgWR0Comt083dbgdX2UKGgGaAloD0MIoN0hxQB5EsCUhpRSlGgVSzJoFkdAqJqfrGBFu3V9lChoBmgJaA9DCBsrMc9KWgnAlIaUUpRoFUsyaBZHQKiaZMlkYoB1fZQoaAZoCWgPQwh4eqUsQywRwJSGlFKUaBVLMmgWR0ConCMEA5q/dX2UKGgGaAloD0MIFHZR9MDnAMCUhpRSlGgVSzJoFkdAqJvl3ljmS3V9lChoBmgJaA9DCL3EWKZf0hPAlIaUUpRoFUsyaBZHQKibqCuEEkl1fZQoaAZoCWgPQwi6nui68CMPwJSGlFKUaBVLMmgWR0Com20yxiXqdX2UKGgGaAloD0MITl/P1yyXD8CUhpRSlGgVSzJoFkdAqJ0n5DZ13nV9lChoBmgJaA9DCH8UdeYeYhPAlIaUUpRoFUsyaBZHQKic6pWFN+N1fZQoaAZoCWgPQwi7XpoiwAkTwJSGlFKUaBVLMmgWR0ConKz4tYjjdX2UKGgGaAloD0MIA137AnohCcCUhpRSlGgVSzJoFkdAqJxx+rlvInV9lChoBmgJaA9DCH1aRX9o5gLAlIaUUpRoFUsyaBZHQKieMLtu1nd1fZQoaAZoCWgPQwgWodgKmrYJwJSGlFKUaBVLMmgWR0ConfOAI6bOdX2UKGgGaAloD0MIwhiRKLRs/L+UhpRSlGgVSzJoFkdAqJ22Po3aSXV9lChoBmgJaA9DCAfRWtHmOAvAlIaUUpRoFUsyaBZHQKide4y44Id1fZQoaAZoCWgPQwi7mdGPhtMNwJSGlFKUaBVLMmgWR0Con0eoUBXCdX2UKGgGaAloD0MI1h9hGLAEEcCUhpRSlGgVSzJoFkdAqJ8KY9gWrXV9lChoBmgJaA9DCA6D+StkbgrAlIaUUpRoFUsyaBZHQKiezONYKY11fZQoaAZoCWgPQwjLaOTzikcRwJSGlFKUaBVLMmgWR0ConpHxz7uVdX2UKGgGaAloD0MIbK8FvTfG/7+UhpRSlGgVSzJoFkdAqKBYrvsqrnV9lChoBmgJaA9DCNkh/mFLjxLAlIaUUpRoFUsyaBZHQKigG3b212J1fZQoaAZoCWgPQwjkFB3J5R8OwJSGlFKUaBVLMmgWR0Con93qiXY2dX2UKGgGaAloD0MIkpGzsKc9D8CUhpRSlGgVSzJoFkdAqJ+jF0gbInV9lChoBmgJaA9DCMsPXOUJZAXAlIaUUpRoFUsyaBZHQKihaL9deIF1fZQoaAZoCWgPQwgydsJLcMoDwJSGlFKUaBVLMmgWR0CooSuZTho/dX2UKGgGaAloD0MIea7vw0HCBMCUhpRSlGgVSzJoFkdAqKDuCyyD7XV9lChoBmgJaA9DCELooEs4BBDAlIaUUpRoFUsyaBZHQKigsv4dp7F1fZQoaAZoCWgPQwjKpfELrxQVwJSGlFKUaBVLMmgWR0Coonw1BMSLdX2UKGgGaAloD0MIuY5xxcVxDMCUhpRSlGgVSzJoFkdAqKI/Dcdo4HV9lChoBmgJaA9DCCQNbmsLbwTAlIaUUpRoFUsyaBZHQKiiAa5wwTN1fZQoaAZoCWgPQwiFe2XeqksUwJSGlFKUaBVLMmgWR0CoocbXHzYmdX2UKGgGaAloD0MI/wOsVbt2FcCUhpRSlGgVSzJoFkdAqKOlHFxXGXV9lChoBmgJaA9DCGkaFM0D+A7AlIaUUpRoFUsyaBZHQKijaHP/rB11fZQoaAZoCWgPQwja5Vsf1vsPwJSGlFKUaBVLMmgWR0CooyriuMdcdX2UKGgGaAloD0MI4qsdxTlqBMCUhpRSlGgVSzJoFkdAqKLv84xUN3V9lChoBmgJaA9DCJRsdTkl0BXAlIaUUpRoFUsyaBZHQKikwUuctoV1fZQoaAZoCWgPQwjlCu9yEb8KwJSGlFKUaBVLMmgWR0CopIQDeTFEdX2UKGgGaAloD0MIYviImBJpBsCUhpRSlGgVSzJoFkdAqKRGbkOqenV9lChoBmgJaA9DCJimCHB6dw3AlIaUUpRoFUsyaBZHQKikC6MBIWh1fZQoaAZoCWgPQwjKFd7lIn4IwJSGlFKUaBVLMmgWR0CopdTRYzSDdX2UKGgGaAloD0MIUg/R6A4iF8CUhpRSlGgVSzJoFkdAqKWXkHUtqnV9lChoBmgJaA9DCGmoUUgyq/6/lIaUUpRoFUsyaBZHQKilWe8wpON1fZQoaAZoCWgPQwhViEfi5ckNwJSGlFKUaBVLMmgWR0CopR8YQ8OkdX2UKGgGaAloD0MIAyfbwB0IAsCUhpRSlGgVSzJoFkdAqKboOFxn4HV9lChoBmgJaA9DCJ+tg4O9SRDAlIaUUpRoFUsyaBZHQKimqxPfsNV1fZQoaAZoCWgPQwjekbHa/E8VwJSGlFKUaBVLMmgWR0Copm2YfGModX2UKGgGaAloD0MICMkCJnAbE8CUhpRSlGgVSzJoFkdAqKYyoMrmQ3V9lChoBmgJaA9DCCUjZ2FP2wPAlIaUUpRoFUsyaBZHQKioAT1TR6Z1fZQoaAZoCWgPQwg1RBX+DI8JwJSGlFKUaBVLMmgWR0Cop8QNkOI7dX2UKGgGaAloD0MI8tO4N7/hDMCUhpRSlGgVSzJoFkdAqKeGjmCAc3V9lChoBmgJaA9DCEeQSrGjsQrAlIaUUpRoFUsyaBZHQKinS/5+H8F1fZQoaAZoCWgPQwgnT1lN11MEwJSGlFKUaBVLMmgWR0CoqQyfUWl/dX2UKGgGaAloD0MItaUO8npAE8CUhpRSlGgVSzJoFkdAqKjPUMG5c3V9lChoBmgJaA9DCOM3hZUKehPAlIaUUpRoFUsyaBZHQKiokbxVhkR1fZQoaAZoCWgPQwjItDaN7aUSwJSGlFKUaBVLMmgWR0CoqFbLEDQrdX2UKGgGaAloD0MIxjL9EvGGF8CUhpRSlGgVSzJoFkdAqKob9CNS63V9lChoBmgJaA9DCLiwbrw7ohXAlIaUUpRoFUsyaBZHQKip3qrzXjF1fZQoaAZoCWgPQwjO+pRjsvgUwJSGlFKUaBVLMmgWR0CoqaFLnLaFdX2UKGgGaAloD0MIYvay7bQ1AcCUhpRSlGgVSzJoFkdAqKlmWrwOOXV9lChoBmgJaA9DCOfhBKbTOhHAlIaUUpRoFUsyaBZHQKirLr8iwB51fZQoaAZoCWgPQwhDVrd6TjoOwJSGlFKUaBVLMmgWR0CoqvFtKqXGdX2UKGgGaAloD0MIo8wGmWRUEMCUhpRSlGgVSzJoFkdAqKqz5bhWHXV9lChoBmgJaA9DCBiWP98WTAzAlIaUUpRoFUsyaBZHQKiqePxQSBd1fZQoaAZoCWgPQwhTknU4usoNwJSGlFKUaBVLMmgWR0CorEWRaHKwdX2UKGgGaAloD0MIWyVYHM7cFcCUhpRSlGgVSzJoFkdAqKwIPbwjMXV9lChoBmgJaA9DCJYEqKll6/e/lIaUUpRoFUsyaBZHQKiryqlP8AJ1fZQoaAZoCWgPQwja5sb0hIUHwJSGlFKUaBVLMmgWR0Coq4+1SflIdX2UKGgGaAloD0MIIZOMnIXtEcCUhpRSlGgVSzJoFkdAqK1MjJMg2nV9lChoBmgJaA9DCIE9JlKabQ/AlIaUUpRoFUsyaBZHQKitD8+A3DN1fZQoaAZoCWgPQwhTB3k9mNQPwJSGlFKUaBVLMmgWR0CorNLvTgEVdX2UKGgGaAloD0MI3bbvUX8dEcCUhpRSlGgVSzJoFkdAqKyYJZ4fOnV9lChoBmgJaA9DCOePaW0aGwXAlIaUUpRoFUsyaBZHQKiua9sabWp1fZQoaAZoCWgPQwjAP6VKlP0NwJSGlFKUaBVLMmgWR0Cori8bR4QjdX2UKGgGaAloD0MIHmyx22eVFcCUhpRSlGgVSzJoFkdAqK3xsqJ/G3V9lChoBmgJaA9DCJ56pMFtjRPAlIaUUpRoFUsyaBZHQKittuc+aBt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (773 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.4787845321465283, "std_reward": 1.0825701795386449, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T09:34:28.740655"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69398a9deb6204f6534a34437106e817d7cde4995cdaeb10140326912f4a367f
|
3 |
+
size 3212
|