File size: 2,161 Bytes
b59ac87 26d1f9e b59ac87 c0475d8 b59ac87 536da40 b59ac87 4c8f4c6 8bb4718 4c8f4c6 fadd8ff 4c8f4c6 c0475d8 536da40 9b001df ae3d3ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
library_name: transformers
license: apache-2.0
---
# Ukrainian finetuned Mistral-7B-Instruct-v0.2
Supervised finetuning of Mistral-7B-Instruct-v0.2 on ukrainian datasets.
## Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens.
E.g.
```
text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]"
```
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
## Model Architecture
This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
## Datasets
- [UA-SQUAD](https://huggingface.co/datasets/FIdo-AI/ua-squad/resolve/main/ua_squad_dataset.json)
- [Ukrainian StackExchange](https://huggingface.co/datasets/zeusfsx/ukrainian-stackexchange)
- [UAlpaca Dataset](https://github.com/robinhad/kruk/blob/main/data/cc-by-nc/alpaca_data_translated.json)
- [Ukrainian Subset from Belebele Dataset](https://github.com/facebookresearch/belebele)
- [Ukrainian Subset from XQA](https://github.com/thunlp/XQA)
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Radu1999/Mistral-Instruct-Ukrainian-SFT"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.bfloat16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Author
Radu Chivereanu |