KaleiNeely commited on
Commit
80a4dff
·
verified ·
1 Parent(s): 5879f43

Update tokenization_rwkv5.py

Browse files
Files changed (1) hide show
  1. tokenization_rwkv5.py +12 -13
tokenization_rwkv5.py CHANGED
@@ -15,8 +15,8 @@
15
  """Tokenization classes for RWKV5."""
16
 
17
  import os
18
- from typing import TYPE_CHECKING, List, Optional, Tuple
19
  import re
 
20
 
21
  from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
  from transformers.utils import logging
@@ -37,7 +37,6 @@ PRETRAINED_VOCAB_FILES_MAP = {
37
  }
38
 
39
 
40
-
41
  def whitespace_tokenize(text):
42
  """Runs basic whitespace cleaning and splitting on a piece of text.
43
  The separators are kept
@@ -52,10 +51,9 @@ def whitespace_tokenize(text):
52
  class WordpieceTokenizer(object):
53
  """Runs WordPiece tokenization."""
54
 
55
- def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
56
  self.vocab = vocab
57
  self.unk_token = unk_token
58
- self.max_input_chars_per_word = max_input_chars_per_word
59
 
60
  def tokenize(self, text):
61
  """
@@ -75,10 +73,6 @@ class WordpieceTokenizer(object):
75
  output_tokens = []
76
  for token in whitespace_tokenize(text):
77
  chars = list(token)
78
- if len(chars) > self.max_input_chars_per_word:
79
- output_tokens.append(self.unk_token)
80
- continue
81
-
82
  is_bad = False
83
  start = 0
84
  sub_tokens = []
@@ -94,9 +88,12 @@ class WordpieceTokenizer(object):
94
  if cur_substr is None:
95
  is_bad = True
96
  break
97
- sub_tokens.append(cur_substr.decode())
 
 
 
 
98
  start = end
99
-
100
  if is_bad:
101
  output_tokens.append(self.unk_token)
102
  else:
@@ -111,7 +108,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
111
 
112
  model_input_names = ["input_ids", "attention_mask"]
113
 
114
- def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", pad_token="<s>",**kwargs):
115
  if not os.path.isfile(vocab_file):
116
  raise ValueError(
117
  f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
@@ -130,7 +127,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
130
  self.decoder = {v: k for k, v in vocab.items()}
131
  self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
132
  self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
133
- super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, **kwargs)
134
 
135
  @property
136
  def vocab_size(self):
@@ -146,7 +143,9 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
146
 
147
  def _convert_token_to_id(self, token):
148
  """Converts a token (byte) to an id using the vocab."""
149
- if not isinstance(token, bytes):
 
 
150
  token = token.encode("utf-8", errors="replace")
151
  return self.encoder.get(token, self.unk_token_id)
152
 
 
15
  """Tokenization classes for RWKV5."""
16
 
17
  import os
 
18
  import re
19
+ from typing import TYPE_CHECKING, List, Optional, Tuple
20
 
21
  from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
  from transformers.utils import logging
 
37
  }
38
 
39
 
 
40
  def whitespace_tokenize(text):
41
  """Runs basic whitespace cleaning and splitting on a piece of text.
42
  The separators are kept
 
51
  class WordpieceTokenizer(object):
52
  """Runs WordPiece tokenization."""
53
 
54
+ def __init__(self, vocab, unk_token):
55
  self.vocab = vocab
56
  self.unk_token = unk_token
 
57
 
58
  def tokenize(self, text):
59
  """
 
73
  output_tokens = []
74
  for token in whitespace_tokenize(text):
75
  chars = list(token)
 
 
 
 
76
  is_bad = False
77
  start = 0
78
  sub_tokens = []
 
88
  if cur_substr is None:
89
  is_bad = True
90
  break
91
+ try:
92
+ cur_substr = cur_substr.decode()
93
+ except UnicodeDecodeError:
94
+ cur_substr = str(cur_substr)
95
+ sub_tokens.append(cur_substr)
96
  start = end
 
97
  if is_bad:
98
  output_tokens.append(self.unk_token)
99
  else:
 
108
 
109
  model_input_names = ["input_ids", "attention_mask"]
110
 
111
+ def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs):
112
  if not os.path.isfile(vocab_file):
113
  raise ValueError(
114
  f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
 
127
  self.decoder = {v: k for k, v in vocab.items()}
128
  self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
129
  self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
130
+ super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
131
 
132
  @property
133
  def vocab_size(self):
 
143
 
144
  def _convert_token_to_id(self, token):
145
  """Converts a token (byte) to an id using the vocab."""
146
+ if token.startswith("b'\\"):
147
+ token = eval(token)
148
+ elif not isinstance(token, bytes):
149
  token = token.encode("utf-8", errors="replace")
150
  return self.encoder.get(token, self.unk_token_id)
151