RSPMetaAdmin
commited on
Upload 2 files
Browse files- outpainting_mk_2.py +295 -0
- poor_mans_outpainting.py +146 -0
outpainting_mk_2.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import skimage
|
5 |
+
|
6 |
+
import modules.scripts as scripts
|
7 |
+
import gradio as gr
|
8 |
+
from PIL import Image, ImageDraw
|
9 |
+
|
10 |
+
from modules import images
|
11 |
+
from modules.processing import Processed, process_images
|
12 |
+
from modules.shared import opts, state
|
13 |
+
|
14 |
+
|
15 |
+
# this function is taken from https://github.com/parlance-zz/g-diffuser-bot
|
16 |
+
def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05):
|
17 |
+
# helper fft routines that keep ortho normalization and auto-shift before and after fft
|
18 |
+
def _fft2(data):
|
19 |
+
if data.ndim > 2: # has channels
|
20 |
+
out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
|
21 |
+
for c in range(data.shape[2]):
|
22 |
+
c_data = data[:, :, c]
|
23 |
+
out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho")
|
24 |
+
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
|
25 |
+
else: # one channel
|
26 |
+
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
27 |
+
out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho")
|
28 |
+
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
|
29 |
+
|
30 |
+
return out_fft
|
31 |
+
|
32 |
+
def _ifft2(data):
|
33 |
+
if data.ndim > 2: # has channels
|
34 |
+
out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
|
35 |
+
for c in range(data.shape[2]):
|
36 |
+
c_data = data[:, :, c]
|
37 |
+
out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho")
|
38 |
+
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
|
39 |
+
else: # one channel
|
40 |
+
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
41 |
+
out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho")
|
42 |
+
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
|
43 |
+
|
44 |
+
return out_ifft
|
45 |
+
|
46 |
+
def _get_gaussian_window(width, height, std=3.14, mode=0):
|
47 |
+
window_scale_x = float(width / min(width, height))
|
48 |
+
window_scale_y = float(height / min(width, height))
|
49 |
+
|
50 |
+
window = np.zeros((width, height))
|
51 |
+
x = (np.arange(width) / width * 2. - 1.) * window_scale_x
|
52 |
+
for y in range(height):
|
53 |
+
fy = (y / height * 2. - 1.) * window_scale_y
|
54 |
+
if mode == 0:
|
55 |
+
window[:, y] = np.exp(-(x ** 2 + fy ** 2) * std)
|
56 |
+
else:
|
57 |
+
window[:, y] = (1 / ((x ** 2 + 1.) * (fy ** 2 + 1.))) ** (std / 3.14) # hey wait a minute that's not gaussian
|
58 |
+
|
59 |
+
return window
|
60 |
+
|
61 |
+
def _get_masked_window_rgb(np_mask_grey, hardness=1.):
|
62 |
+
np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3))
|
63 |
+
if hardness != 1.:
|
64 |
+
hardened = np_mask_grey[:] ** hardness
|
65 |
+
else:
|
66 |
+
hardened = np_mask_grey[:]
|
67 |
+
for c in range(3):
|
68 |
+
np_mask_rgb[:, :, c] = hardened[:]
|
69 |
+
return np_mask_rgb
|
70 |
+
|
71 |
+
width = _np_src_image.shape[0]
|
72 |
+
height = _np_src_image.shape[1]
|
73 |
+
num_channels = _np_src_image.shape[2]
|
74 |
+
|
75 |
+
_np_src_image[:] * (1. - np_mask_rgb)
|
76 |
+
np_mask_grey = (np.sum(np_mask_rgb, axis=2) / 3.)
|
77 |
+
img_mask = np_mask_grey > 1e-6
|
78 |
+
ref_mask = np_mask_grey < 1e-3
|
79 |
+
|
80 |
+
windowed_image = _np_src_image * (1. - _get_masked_window_rgb(np_mask_grey))
|
81 |
+
windowed_image /= np.max(windowed_image)
|
82 |
+
windowed_image += np.average(_np_src_image) * np_mask_rgb # / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
|
83 |
+
|
84 |
+
src_fft = _fft2(windowed_image) # get feature statistics from masked src img
|
85 |
+
src_dist = np.absolute(src_fft)
|
86 |
+
src_phase = src_fft / src_dist
|
87 |
+
|
88 |
+
# create a generator with a static seed to make outpainting deterministic / only follow global seed
|
89 |
+
rng = np.random.default_rng(0)
|
90 |
+
|
91 |
+
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
|
92 |
+
noise_rgb = rng.random((width, height, num_channels))
|
93 |
+
noise_grey = (np.sum(noise_rgb, axis=2) / 3.)
|
94 |
+
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
|
95 |
+
for c in range(num_channels):
|
96 |
+
noise_rgb[:, :, c] += (1. - color_variation) * noise_grey
|
97 |
+
|
98 |
+
noise_fft = _fft2(noise_rgb)
|
99 |
+
for c in range(num_channels):
|
100 |
+
noise_fft[:, :, c] *= noise_window
|
101 |
+
noise_rgb = np.real(_ifft2(noise_fft))
|
102 |
+
shaped_noise_fft = _fft2(noise_rgb)
|
103 |
+
shaped_noise_fft[:, :, :] = np.absolute(shaped_noise_fft[:, :, :]) ** 2 * (src_dist ** noise_q) * src_phase # perform the actual shaping
|
104 |
+
|
105 |
+
brightness_variation = 0. # color_variation # todo: temporarily tieing brightness variation to color variation for now
|
106 |
+
contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2.
|
107 |
+
|
108 |
+
# scikit-image is used for histogram matching, very convenient!
|
109 |
+
shaped_noise = np.real(_ifft2(shaped_noise_fft))
|
110 |
+
shaped_noise -= np.min(shaped_noise)
|
111 |
+
shaped_noise /= np.max(shaped_noise)
|
112 |
+
shaped_noise[img_mask, :] = skimage.exposure.match_histograms(shaped_noise[img_mask, :] ** 1., contrast_adjusted_np_src[ref_mask, :], channel_axis=1)
|
113 |
+
shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb
|
114 |
+
|
115 |
+
matched_noise = shaped_noise[:]
|
116 |
+
|
117 |
+
return np.clip(matched_noise, 0., 1.)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
class Script(scripts.Script):
|
122 |
+
def title(self):
|
123 |
+
return "Outpainting mk2"
|
124 |
+
|
125 |
+
def show(self, is_img2img):
|
126 |
+
return is_img2img
|
127 |
+
|
128 |
+
def ui(self, is_img2img):
|
129 |
+
if not is_img2img:
|
130 |
+
return None
|
131 |
+
|
132 |
+
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8</p>")
|
133 |
+
|
134 |
+
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
|
135 |
+
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=8, elem_id=self.elem_id("mask_blur"))
|
136 |
+
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))
|
137 |
+
noise_q = gr.Slider(label="Fall-off exponent (lower=higher detail)", minimum=0.0, maximum=4.0, step=0.01, value=1.0, elem_id=self.elem_id("noise_q"))
|
138 |
+
color_variation = gr.Slider(label="Color variation", minimum=0.0, maximum=1.0, step=0.01, value=0.05, elem_id=self.elem_id("color_variation"))
|
139 |
+
|
140 |
+
return [info, pixels, mask_blur, direction, noise_q, color_variation]
|
141 |
+
|
142 |
+
def run(self, p, _, pixels, mask_blur, direction, noise_q, color_variation):
|
143 |
+
initial_seed_and_info = [None, None]
|
144 |
+
|
145 |
+
process_width = p.width
|
146 |
+
process_height = p.height
|
147 |
+
|
148 |
+
p.inpaint_full_res = False
|
149 |
+
p.inpainting_fill = 1
|
150 |
+
p.do_not_save_samples = True
|
151 |
+
p.do_not_save_grid = True
|
152 |
+
|
153 |
+
left = pixels if "left" in direction else 0
|
154 |
+
right = pixels if "right" in direction else 0
|
155 |
+
up = pixels if "up" in direction else 0
|
156 |
+
down = pixels if "down" in direction else 0
|
157 |
+
|
158 |
+
if left > 0 or right > 0:
|
159 |
+
mask_blur_x = mask_blur
|
160 |
+
else:
|
161 |
+
mask_blur_x = 0
|
162 |
+
|
163 |
+
if up > 0 or down > 0:
|
164 |
+
mask_blur_y = mask_blur
|
165 |
+
else:
|
166 |
+
mask_blur_y = 0
|
167 |
+
|
168 |
+
p.mask_blur_x = mask_blur_x*4
|
169 |
+
p.mask_blur_y = mask_blur_y*4
|
170 |
+
|
171 |
+
init_img = p.init_images[0]
|
172 |
+
target_w = math.ceil((init_img.width + left + right) / 64) * 64
|
173 |
+
target_h = math.ceil((init_img.height + up + down) / 64) * 64
|
174 |
+
|
175 |
+
if left > 0:
|
176 |
+
left = left * (target_w - init_img.width) // (left + right)
|
177 |
+
|
178 |
+
if right > 0:
|
179 |
+
right = target_w - init_img.width - left
|
180 |
+
|
181 |
+
if up > 0:
|
182 |
+
up = up * (target_h - init_img.height) // (up + down)
|
183 |
+
|
184 |
+
if down > 0:
|
185 |
+
down = target_h - init_img.height - up
|
186 |
+
|
187 |
+
def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
|
188 |
+
is_horiz = is_left or is_right
|
189 |
+
is_vert = is_top or is_bottom
|
190 |
+
pixels_horiz = expand_pixels if is_horiz else 0
|
191 |
+
pixels_vert = expand_pixels if is_vert else 0
|
192 |
+
|
193 |
+
images_to_process = []
|
194 |
+
output_images = []
|
195 |
+
for n in range(count):
|
196 |
+
res_w = init[n].width + pixels_horiz
|
197 |
+
res_h = init[n].height + pixels_vert
|
198 |
+
process_res_w = math.ceil(res_w / 64) * 64
|
199 |
+
process_res_h = math.ceil(res_h / 64) * 64
|
200 |
+
|
201 |
+
img = Image.new("RGB", (process_res_w, process_res_h))
|
202 |
+
img.paste(init[n], (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
|
203 |
+
mask = Image.new("RGB", (process_res_w, process_res_h), "white")
|
204 |
+
draw = ImageDraw.Draw(mask)
|
205 |
+
draw.rectangle((
|
206 |
+
expand_pixels + mask_blur_x if is_left else 0,
|
207 |
+
expand_pixels + mask_blur_y if is_top else 0,
|
208 |
+
mask.width - expand_pixels - mask_blur_x if is_right else res_w,
|
209 |
+
mask.height - expand_pixels - mask_blur_y if is_bottom else res_h,
|
210 |
+
), fill="black")
|
211 |
+
|
212 |
+
np_image = (np.asarray(img) / 255.0).astype(np.float64)
|
213 |
+
np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
|
214 |
+
noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
|
215 |
+
output_images.append(Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB"))
|
216 |
+
|
217 |
+
target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width
|
218 |
+
target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height
|
219 |
+
p.width = target_width if is_horiz else img.width
|
220 |
+
p.height = target_height if is_vert else img.height
|
221 |
+
|
222 |
+
crop_region = (
|
223 |
+
0 if is_left else output_images[n].width - target_width,
|
224 |
+
0 if is_top else output_images[n].height - target_height,
|
225 |
+
target_width if is_left else output_images[n].width,
|
226 |
+
target_height if is_top else output_images[n].height,
|
227 |
+
)
|
228 |
+
mask = mask.crop(crop_region)
|
229 |
+
p.image_mask = mask
|
230 |
+
|
231 |
+
image_to_process = output_images[n].crop(crop_region)
|
232 |
+
images_to_process.append(image_to_process)
|
233 |
+
|
234 |
+
p.init_images = images_to_process
|
235 |
+
|
236 |
+
latent_mask = Image.new("RGB", (p.width, p.height), "white")
|
237 |
+
draw = ImageDraw.Draw(latent_mask)
|
238 |
+
draw.rectangle((
|
239 |
+
expand_pixels + mask_blur_x * 2 if is_left else 0,
|
240 |
+
expand_pixels + mask_blur_y * 2 if is_top else 0,
|
241 |
+
mask.width - expand_pixels - mask_blur_x * 2 if is_right else res_w,
|
242 |
+
mask.height - expand_pixels - mask_blur_y * 2 if is_bottom else res_h,
|
243 |
+
), fill="black")
|
244 |
+
p.latent_mask = latent_mask
|
245 |
+
|
246 |
+
proc = process_images(p)
|
247 |
+
|
248 |
+
if initial_seed_and_info[0] is None:
|
249 |
+
initial_seed_and_info[0] = proc.seed
|
250 |
+
initial_seed_and_info[1] = proc.info
|
251 |
+
|
252 |
+
for n in range(count):
|
253 |
+
output_images[n].paste(proc.images[n], (0 if is_left else output_images[n].width - proc.images[n].width, 0 if is_top else output_images[n].height - proc.images[n].height))
|
254 |
+
output_images[n] = output_images[n].crop((0, 0, res_w, res_h))
|
255 |
+
|
256 |
+
return output_images
|
257 |
+
|
258 |
+
batch_count = p.n_iter
|
259 |
+
batch_size = p.batch_size
|
260 |
+
p.n_iter = 1
|
261 |
+
state.job_count = batch_count * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
|
262 |
+
all_processed_images = []
|
263 |
+
|
264 |
+
for i in range(batch_count):
|
265 |
+
imgs = [init_img] * batch_size
|
266 |
+
state.job = f"Batch {i + 1} out of {batch_count}"
|
267 |
+
|
268 |
+
if left > 0:
|
269 |
+
imgs = expand(imgs, batch_size, left, is_left=True)
|
270 |
+
if right > 0:
|
271 |
+
imgs = expand(imgs, batch_size, right, is_right=True)
|
272 |
+
if up > 0:
|
273 |
+
imgs = expand(imgs, batch_size, up, is_top=True)
|
274 |
+
if down > 0:
|
275 |
+
imgs = expand(imgs, batch_size, down, is_bottom=True)
|
276 |
+
|
277 |
+
all_processed_images += imgs
|
278 |
+
|
279 |
+
all_images = all_processed_images
|
280 |
+
|
281 |
+
combined_grid_image = images.image_grid(all_processed_images)
|
282 |
+
unwanted_grid_because_of_img_count = len(all_processed_images) < 2 and opts.grid_only_if_multiple
|
283 |
+
if opts.return_grid and not unwanted_grid_because_of_img_count:
|
284 |
+
all_images = [combined_grid_image] + all_processed_images
|
285 |
+
|
286 |
+
res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
|
287 |
+
|
288 |
+
if opts.samples_save:
|
289 |
+
for img in all_processed_images:
|
290 |
+
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.samples_format, info=res.info, p=p)
|
291 |
+
|
292 |
+
if opts.grid_save and not unwanted_grid_because_of_img_count:
|
293 |
+
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
294 |
+
|
295 |
+
return res
|
poor_mans_outpainting.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import modules.scripts as scripts
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
|
7 |
+
from modules import images, devices
|
8 |
+
from modules.processing import Processed, process_images
|
9 |
+
from modules.shared import opts, state
|
10 |
+
|
11 |
+
|
12 |
+
class Script(scripts.Script):
|
13 |
+
def title(self):
|
14 |
+
return "Poor man's outpainting"
|
15 |
+
|
16 |
+
def show(self, is_img2img):
|
17 |
+
return is_img2img
|
18 |
+
|
19 |
+
def ui(self, is_img2img):
|
20 |
+
if not is_img2img:
|
21 |
+
return None
|
22 |
+
|
23 |
+
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
|
24 |
+
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur"))
|
25 |
+
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill"))
|
26 |
+
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))
|
27 |
+
|
28 |
+
return [pixels, mask_blur, inpainting_fill, direction]
|
29 |
+
|
30 |
+
def run(self, p, pixels, mask_blur, inpainting_fill, direction):
|
31 |
+
initial_seed = None
|
32 |
+
initial_info = None
|
33 |
+
|
34 |
+
p.mask_blur = mask_blur * 2
|
35 |
+
p.inpainting_fill = inpainting_fill
|
36 |
+
p.inpaint_full_res = False
|
37 |
+
|
38 |
+
left = pixels if "left" in direction else 0
|
39 |
+
right = pixels if "right" in direction else 0
|
40 |
+
up = pixels if "up" in direction else 0
|
41 |
+
down = pixels if "down" in direction else 0
|
42 |
+
|
43 |
+
init_img = p.init_images[0]
|
44 |
+
target_w = math.ceil((init_img.width + left + right) / 64) * 64
|
45 |
+
target_h = math.ceil((init_img.height + up + down) / 64) * 64
|
46 |
+
|
47 |
+
if left > 0:
|
48 |
+
left = left * (target_w - init_img.width) // (left + right)
|
49 |
+
if right > 0:
|
50 |
+
right = target_w - init_img.width - left
|
51 |
+
|
52 |
+
if up > 0:
|
53 |
+
up = up * (target_h - init_img.height) // (up + down)
|
54 |
+
|
55 |
+
if down > 0:
|
56 |
+
down = target_h - init_img.height - up
|
57 |
+
|
58 |
+
img = Image.new("RGB", (target_w, target_h))
|
59 |
+
img.paste(init_img, (left, up))
|
60 |
+
|
61 |
+
mask = Image.new("L", (img.width, img.height), "white")
|
62 |
+
draw = ImageDraw.Draw(mask)
|
63 |
+
draw.rectangle((
|
64 |
+
left + (mask_blur * 2 if left > 0 else 0),
|
65 |
+
up + (mask_blur * 2 if up > 0 else 0),
|
66 |
+
mask.width - right - (mask_blur * 2 if right > 0 else 0),
|
67 |
+
mask.height - down - (mask_blur * 2 if down > 0 else 0)
|
68 |
+
), fill="black")
|
69 |
+
|
70 |
+
latent_mask = Image.new("L", (img.width, img.height), "white")
|
71 |
+
latent_draw = ImageDraw.Draw(latent_mask)
|
72 |
+
latent_draw.rectangle((
|
73 |
+
left + (mask_blur//2 if left > 0 else 0),
|
74 |
+
up + (mask_blur//2 if up > 0 else 0),
|
75 |
+
mask.width - right - (mask_blur//2 if right > 0 else 0),
|
76 |
+
mask.height - down - (mask_blur//2 if down > 0 else 0)
|
77 |
+
), fill="black")
|
78 |
+
|
79 |
+
devices.torch_gc()
|
80 |
+
|
81 |
+
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
82 |
+
grid_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
83 |
+
grid_latent_mask = images.split_grid(latent_mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
84 |
+
|
85 |
+
p.n_iter = 1
|
86 |
+
p.batch_size = 1
|
87 |
+
p.do_not_save_grid = True
|
88 |
+
p.do_not_save_samples = True
|
89 |
+
|
90 |
+
work = []
|
91 |
+
work_mask = []
|
92 |
+
work_latent_mask = []
|
93 |
+
work_results = []
|
94 |
+
|
95 |
+
for (y, h, row), (_, _, row_mask), (_, _, row_latent_mask) in zip(grid.tiles, grid_mask.tiles, grid_latent_mask.tiles):
|
96 |
+
for tiledata, tiledata_mask, tiledata_latent_mask in zip(row, row_mask, row_latent_mask):
|
97 |
+
x, w = tiledata[0:2]
|
98 |
+
|
99 |
+
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
|
100 |
+
continue
|
101 |
+
|
102 |
+
work.append(tiledata[2])
|
103 |
+
work_mask.append(tiledata_mask[2])
|
104 |
+
work_latent_mask.append(tiledata_latent_mask[2])
|
105 |
+
|
106 |
+
batch_count = len(work)
|
107 |
+
print(f"Poor man's outpainting will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)}.")
|
108 |
+
|
109 |
+
state.job_count = batch_count
|
110 |
+
|
111 |
+
for i in range(batch_count):
|
112 |
+
p.init_images = [work[i]]
|
113 |
+
p.image_mask = work_mask[i]
|
114 |
+
p.latent_mask = work_latent_mask[i]
|
115 |
+
|
116 |
+
state.job = f"Batch {i + 1} out of {batch_count}"
|
117 |
+
processed = process_images(p)
|
118 |
+
|
119 |
+
if initial_seed is None:
|
120 |
+
initial_seed = processed.seed
|
121 |
+
initial_info = processed.info
|
122 |
+
|
123 |
+
p.seed = processed.seed + 1
|
124 |
+
work_results += processed.images
|
125 |
+
|
126 |
+
|
127 |
+
image_index = 0
|
128 |
+
for y, h, row in grid.tiles:
|
129 |
+
for tiledata in row:
|
130 |
+
x, w = tiledata[0:2]
|
131 |
+
|
132 |
+
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
|
133 |
+
continue
|
134 |
+
|
135 |
+
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
|
136 |
+
image_index += 1
|
137 |
+
|
138 |
+
combined_image = images.combine_grid(grid)
|
139 |
+
|
140 |
+
if opts.samples_save:
|
141 |
+
images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
|
142 |
+
|
143 |
+
processed = Processed(p, [combined_image], initial_seed, initial_info)
|
144 |
+
|
145 |
+
return processed
|
146 |
+
|