File size: 8,861 Bytes
759c0d8
 
 
7eb17f0
759c0d8
 
 
7eb17f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759c0d8
 
d7002f1
759c0d8
 
 
1a32d64
759c0d8
 
 
973e466
759c0d8
 
 
 
 
 
 
ced4121
 
 
 
759c0d8
 
 
 
 
 
41750c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f9305b
 
 
 
41750c8
 
 
 
 
 
 
 
 
 
759c0d8
 
 
 
 
 
 
 
 
 
7eb17f0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
language:
- en
license: apache-2.0
tags:
- pretrained
- moe
pipeline_tag: text-generation
model-index:
- name: Qwen2-57B-A14B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 31.13
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-57B-A14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 38.88
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-57B-A14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 18.66
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-57B-A14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.49
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-57B-A14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.54
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-57B-A14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 43.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-57B-A14B
      name: Open LLM Leaderboard
---

# Qwen2-57B-A14B

## Introduction

Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the 57B-A14B Mixture-of-Experts Qwen2 base language model.

Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.

For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2), and [Documentation](https://qwen.readthedocs.io/en/latest/).
<br>


## Model Details
Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.

## Requirements
The code of Qwen2MoE has been in the latest Hugging face transformers and we advise you to install `transformers>=4.40.0`, or you might encounter the following error:
```
KeyError: 'qwen2_moe'
```


## Usage

We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.

## Performance

The evaluation of base models mainly focuses on the model performance of natural language understanding, general question answering, coding, mathematics, scientific knowledge, reasoning, multilingual capability, etc. 

The datasets for evaluation include: 
 
**English Tasks**: MMLU (5-shot), MMLU-Pro (5-shot), GPQA (5shot), Theorem QA (5-shot), BBH (3-shot), HellaSwag (10-shot), Winogrande (5-shot), TruthfulQA (0-shot), ARC-C (25-shot)
 
**Coding Tasks**: EvalPlus (0-shot) (HumanEval, MBPP, HumanEval+, MBPP+), MultiPL-E (0-shot) (Python, C++, JAVA, PHP, TypeScript, C#, Bash, JavaScript)
  
**Math Tasks**: GSM8K (4-shot), MATH (4-shot)
 
**Chinese Tasks**: C-Eval(5-shot), CMMLU (5-shot)
 
**Multilingual Tasks**: Multi-Exam (M3Exam 5-shot, IndoMMLU 3-shot, ruMMLU 5-shot, mMMLU 5-shot), Multi-Understanding (BELEBELE 5-shot, XCOPA 5-shot, XWinograd 5-shot, XStoryCloze 0-shot, PAWS-X 5-shot), Multi-Mathematics (MGSM 8-shot), Multi-Translation (Flores-101 5-shot)
 
#### Qwen2-57B-A14B performance
|  Datasets  |  Jamba  |   Mixtral-8x7B |   Yi-1.5-34B  |   Qwen1.5-32B  |  ****Qwen2-57B-A14B****  |
| :--------| :---------: | :------------: | :------------: | :------------: | :------------: |
|Architecture | MoE | MoE | Dense | Dense | MoE |
|#Activated Params | 12B | 12B | 34B | 32B | 14B |
|#Params | 52B | 47B | 34B | 32B | 57B   |
|   ***English***  |    |    |   |    |	    |
|MMLU | 67.4 | 71.8 | **77.1** | 74.3 | 76.5 |
|MMLU-Pro | - | 41.0 | **48.3** | 44.0 | 43.0 |
|GPQA | - | 29.2 | - | 30.8 | **34.3** |
|Theorem QA | - | 23.2 | - | 28.8 | **33.5** |
|BBH  | 45.4 |  50.3  | **76.4** | 66.8 | 67.0 |
|HellaSwag  | **87.1** |  86.5  | 85.9 |  85.0 | 85.2 |
|Winogrande  | 82.5 |  81.9  | **84.9** |  81.5 |  79.5 |
|ARC-C  | 64.4 |  **66.0**  | 65.6 | 63.6 |  64.1 |
|TruthfulQA  | 46.4 |  51.1  | 53.9 | 57.4 |  **57.7** |
|   ***Coding***  |    |    |   |    |	    |
|HumanEval | 29.3 | 37.2 | 46.3 | 43.3 | **53.0**  |
|MBPP | - | 63.9 | 65.5 | 64.2 | **71.9**  |
|EvalPlus | - | 46.4 | 51.9 | 50.4 | **57.2**  |
|MultiPL-E | - | 39.0 | 39.5 | 38.5 | **49.8**  |
|   ***Mathematics***  |    |    |   |    |	    |
|GSM8K | 59.9 |  62.5  | **82.7** | 76.8 | 80.7 |
|MATH  | - |  30.8  | 41.7 | 36.1 | **43.0** |
|   ***Chinese***  |    |    |   |    |	    |
|C-Eval   | - |   -    |  - |  83.5 |  **87.7** |
|CMMLU   | - |   -    | 84.8 | 82.3 | **88.5** |
|   ***Multilingual***  |    |    |   |    |	    |
|Multi-Exam   | - |   56.1    |  58.3 |  61.6 |  **65.5** |
|Multi-Understanding | - |   70.7    |  73.9 |  76.5 |  **77.0** |
|Multi-Mathematics | - |   45.0    |  49.3 |  56.1 |  **62.3** |
|Multi-Translation | - |   29.8    |  30.0 |  33.5 |  **34.5** |

### Efficient MoE Models
Compared with training models smaller than 7 billion parameters, it is costly to train medium-size models like 32B while admittedly the 14B model is incapable of performing complex tasks well as the 72B model does. Owing to the recent success of MoE models, this time we turn to employ the MoE model architecture following our previous work Qwen1.5-MoE-A2.7B and extend it to larger model size. Specifically, we apply the same architecture and training strategy, e.g., upcycling, to the model with a total of 57B parameters, only 14B of which are activated in each forward pass. In the following, we list the inference performance of the two models in the deployment with vLLM on 2 NVIDIA A100:

|    | Qwen2-57B-A14B | Qwen1.5-32B    |
| :---| :---------: | :------------: |
| QPS |   9.40    |     5.18      | 
| TPS |  10345.17    |   5698.37   |

In terms of efficiency, we observe clear advantages of Qwen2-57B-A14B over Qwen1.5-32B. Furthermore, based on the previous report of model performance on benchmarks, it can be found that Qwen2-57B-A14B obtains superior model quality compared with Qwen1.5-32B, which has more activated parameters. 

## Citation

If you find our work helpful, feel free to give us a cite.

```
@article{qwen2,
  title={Qwen2 Technical Report},
  year={2024}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Qwen__Qwen2-57B-A14B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |25.03|
|IFEval (0-Shot)    |31.13|
|BBH (3-Shot)       |38.88|
|MATH Lvl 5 (4-Shot)|18.66|
|GPQA (0-shot)      | 7.49|
|MuSR (0-shot)      |10.54|
|MMLU-PRO (5-shot)  |43.51|