File size: 7,482 Bytes
1b5dbbb 6d9a187 1b5dbbb 700d604 6d9a187 1b5dbbb 700d604 6d9a187 1b5dbbb 700d604 1b5dbbb 700d604 1b5dbbb 700d604 1b5dbbb 6d9a187 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/phi-4-unsloth-bnb-4bit
datasets:
- bespokelabs/Bespoke-Stratos-17k
- bespokelabs/Bespoke-Stratos-35k
- NovaSky-AI/Sky-T1_data_17k
- Quazim0t0/BenfordsLawReasoningJSON
- open-thoughts/OpenThoughts-114k
model-index:
- name: Phi4.Turn.R1Distill_v1.5.1-Tensors
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 29.95
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/Phi4.Turn.R1Distill_v1.5.1-Tensors
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 49.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/Phi4.Turn.R1Distill_v1.5.1-Tensors
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.59
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/Phi4.Turn.R1Distill_v1.5.1-Tensors
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.46
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/Phi4.Turn.R1Distill_v1.5.1-Tensors
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.04
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/Phi4.Turn.R1Distill_v1.5.1-Tensors
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.75
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/Phi4.Turn.R1Distill_v1.5.1-Tensors
name: Open LLM Leaderboard
---
# TurnPhi Project
- **Developed by:** Quazim0t0
- **Finetuned from model :** unsloth/phi-4-unsloth-bnb-4bit
- **GGUF**
- **Trained for 8 Hours on A800 with the Bespoke Stratos 17k Dataset.**
- **Trained for 6 Hours on A800 with the Bespoke Stratos 35k Dataset.**
- **Trained for 2 Hours on A800 with the Benford's Law Reasoning Small 430 Row Dataset, ensuring no overfitting.**
- **Trained for 4 Hours on A800 with the Sky-T1_data_17k Dataset**
- **Trained for 6 Hours on A800 with the Openthoughts 114k Dataset.**
- **18$ Training...I'm actually amazed by the results.**
# OpenWeb UI Function
If using this model for Open WebUI here is a simple function to organize the models responses: https://openwebui.com/f/quaz93/phi4_turn_r1_distill_thought_function_v1
# Phi4 Turn R1Distill LoRA Adapters
## Overview
These **LoRA adapters** were trained using diverse **reasoning datasets** that incorporate structured **Thought** and **Solution** responses to enhance logical inference. This project was designed to **test the R1 dataset** on **Phi-4**, aiming to create a **lightweight, fast, and efficient reasoning model**.
All adapters were fine-tuned using an **NVIDIA A800 GPU**, ensuring high performance and compatibility for continued training, merging, or direct deployment.
As part of an open-source initiative, all resources are made **publicly available** for unrestricted research and development.
---
## LoRA Adapters
Below are the currently available LoRA fine-tuned adapters (**as of January 30, 2025**):
- [Phi4.Turn.R1Distill-Lora1](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora1)
- [Phi4.Turn.R1Distill-Lora2](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora2)
- [Phi4.Turn.R1Distill-Lora3](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora3)
- [Phi4.Turn.R1Distill-Lora4](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora4)
- [Phi4.Turn.R1Distill-Lora5](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora5)
- [Phi4.Turn.R1Distill-Lora6](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora6)
- [Phi4.Turn.R1Distill-Lora7](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora7)
- [Phi4.Turn.R1Distill-Lora8](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora8)
---
## GGUF Full & Quantized Models
To facilitate broader testing and real-world inference, **GGUF Full and Quantized versions** have been provided for evaluation on **Open WebUI** and other LLM interfaces.
### **Version 1**
- [Phi4.Turn.R1Distill.Q8_0](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.Q8_0)
- [Phi4.Turn.R1Distill.Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.Q4_k)
- [Phi4.Turn.R1Distill.16bit](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.16bit)
### **Version 1.1**
- [Phi4.Turn.R1Distill_v1.1_Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.1_Q4_k)
### **Version 1.2**
- [Phi4.Turn.R1Distill_v1.2_Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.2_Q4_k)
### **Version 1.3**
- [Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF)
### **Version 1.4**
- [Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF)
### **Version 1.5**
- [Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF)
---
## Usage
### **Loading LoRA Adapters with `transformers` and `peft`**
To load and apply the LoRA adapters on Phi-4, use the following approach:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = "microsoft/Phi-4"
lora_adapter = "Quazim0t0/Phi4.Turn.R1Distill-Lora1"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model)
model = PeftModel.from_pretrained(model, lora_adapter)
model.eval()
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Quazim0t0__Phi4.Turn.R1Distill_v1.5.1-Tensors-details)
| Metric |Value|
|-------------------|----:|
|Avg. |22.67|
|IFEval (0-Shot) |29.95|
|BBH (3-Shot) |49.22|
|MATH Lvl 5 (4-Shot)| 1.59|
|GPQA (0-shot) | 2.46|
|MuSR (0-shot) | 7.04|
|MMLU-PRO (5-shot) |45.75|
|