Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,1307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
model-index:
|
3 |
+
- name: Quark-Emb-8B
|
4 |
+
results:
|
5 |
+
- dataset:
|
6 |
+
config: default
|
7 |
+
name: MTEB AFQMC (default)
|
8 |
+
revision: latest2023
|
9 |
+
split: validation
|
10 |
+
type: C-MTEB/AFQMC
|
11 |
+
metrics:
|
12 |
+
- type: cosine_pearson
|
13 |
+
value: 52.87704664791064
|
14 |
+
- type: cosine_spearman
|
15 |
+
value: 53.567003436521375
|
16 |
+
- type: manhattan_pearson
|
17 |
+
value: 52.07472780799189
|
18 |
+
- type: manhattan_spearman
|
19 |
+
value: 53.5368469974003
|
20 |
+
- type: euclidean_pearson
|
21 |
+
value: 52.074186684368016
|
22 |
+
- type: euclidean_spearman
|
23 |
+
value: 53.515536447088074
|
24 |
+
- type: main_score
|
25 |
+
value: 53.567003436521375
|
26 |
+
task:
|
27 |
+
type: STS
|
28 |
+
- dataset:
|
29 |
+
config: default
|
30 |
+
name: MTEB ATEC (default)
|
31 |
+
revision: latest2023
|
32 |
+
split: test
|
33 |
+
type: C-MTEB/ATEC
|
34 |
+
metrics:
|
35 |
+
- type: cosine_pearson
|
36 |
+
value: 59.13301114775821
|
37 |
+
- type: cosine_spearman
|
38 |
+
value: 53.42152760117668
|
39 |
+
- type: manhattan_pearson
|
40 |
+
value: 60.05185745744783
|
41 |
+
- type: manhattan_spearman
|
42 |
+
value: 53.36914545708813
|
43 |
+
- type: euclidean_pearson
|
44 |
+
value: 60.17725014927802
|
45 |
+
- type: euclidean_spearman
|
46 |
+
value: 53.431110991334485
|
47 |
+
- type: main_score
|
48 |
+
value: 53.42152760117668
|
49 |
+
task:
|
50 |
+
type: STS
|
51 |
+
- dataset:
|
52 |
+
config: zh
|
53 |
+
name: MTEB AmazonReviewsClassification (zh)
|
54 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
55 |
+
split: test
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 54.74600000000001
|
60 |
+
- type: accuracy_stderr
|
61 |
+
value: 1.060492338491892
|
62 |
+
- type: f1
|
63 |
+
value: 53.49846112279175
|
64 |
+
- type: f1_stderr
|
65 |
+
value: 1.729174511160517
|
66 |
+
- type: main_score
|
67 |
+
value: 54.74600000000001
|
68 |
+
task:
|
69 |
+
type: Classification
|
70 |
+
- dataset:
|
71 |
+
config: zh
|
72 |
+
name: MTEB AmazonReviewsClassification (zh)
|
73 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
74 |
+
split: validation
|
75 |
+
type: mteb/amazon_reviews_multi
|
76 |
+
metrics:
|
77 |
+
- type: accuracy
|
78 |
+
value: 53.468
|
79 |
+
- type: accuracy_stderr
|
80 |
+
value: 1.0129639677698308
|
81 |
+
- type: f1
|
82 |
+
value: 52.21987651679265
|
83 |
+
- type: f1_stderr
|
84 |
+
value: 1.7016822177116173
|
85 |
+
- type: main_score
|
86 |
+
value: 53.468
|
87 |
+
task:
|
88 |
+
type: Classification
|
89 |
+
- dataset:
|
90 |
+
config: default
|
91 |
+
name: MTEB BQ (default)
|
92 |
+
revision: latest2023
|
93 |
+
split: test
|
94 |
+
type: C-MTEB/BQ
|
95 |
+
metrics:
|
96 |
+
- type: cosine_pearson
|
97 |
+
value: 69.640366232364
|
98 |
+
- type: cosine_spearman
|
99 |
+
value: 70.65881213017273
|
100 |
+
- type: manhattan_pearson
|
101 |
+
value: 67.76837799100343
|
102 |
+
- type: manhattan_spearman
|
103 |
+
value: 70.5046111101055
|
104 |
+
- type: euclidean_pearson
|
105 |
+
value: 67.83004194158737
|
106 |
+
- type: euclidean_spearman
|
107 |
+
value: 70.60927547682859
|
108 |
+
- type: main_score
|
109 |
+
value: 70.65881213017273
|
110 |
+
task:
|
111 |
+
type: STS
|
112 |
+
- dataset:
|
113 |
+
config: default
|
114 |
+
name: MTEB CLSClusteringP2P (default)
|
115 |
+
revision: latest2023
|
116 |
+
split: test
|
117 |
+
type: C-MTEB/CLSClusteringP2P
|
118 |
+
metrics:
|
119 |
+
- type: v_measure
|
120 |
+
value: 62.32714079793593
|
121 |
+
- type: v_measure_std
|
122 |
+
value: 1.5782386182731478
|
123 |
+
- type: main_score
|
124 |
+
value: 62.32714079793593
|
125 |
+
task:
|
126 |
+
type: Clustering
|
127 |
+
- dataset:
|
128 |
+
config: default
|
129 |
+
name: MTEB CLSClusteringS2S (default)
|
130 |
+
revision: latest2023
|
131 |
+
split: test
|
132 |
+
type: C-MTEB/CLSClusteringS2S
|
133 |
+
metrics:
|
134 |
+
- type: v_measure
|
135 |
+
value: 59.29532340833129
|
136 |
+
- type: v_measure_std
|
137 |
+
value: 1.5258658358346424
|
138 |
+
- type: main_score
|
139 |
+
value: 59.29532340833129
|
140 |
+
task:
|
141 |
+
type: Clustering
|
142 |
+
- dataset:
|
143 |
+
config: default
|
144 |
+
name: MTEB CMedQAv1-reranking (default)
|
145 |
+
revision: latest2023
|
146 |
+
split: test
|
147 |
+
type: C-MTEB/CMedQAv1-reranking
|
148 |
+
metrics:
|
149 |
+
- type: map
|
150 |
+
value: 88.02263756085355
|
151 |
+
- type: mrr
|
152 |
+
value: 90.18928571428572
|
153 |
+
- type: main_score
|
154 |
+
value: 88.02263756085355
|
155 |
+
task:
|
156 |
+
type: Reranking
|
157 |
+
- dataset:
|
158 |
+
config: default
|
159 |
+
name: MTEB CMedQAv2-reranking (default)
|
160 |
+
revision: latest2023
|
161 |
+
split: test
|
162 |
+
type: C-MTEB/CMedQAv2-reranking
|
163 |
+
metrics:
|
164 |
+
- type: map
|
165 |
+
value: 88.81199829110464
|
166 |
+
- type: mrr
|
167 |
+
value: 90.81817460317461
|
168 |
+
- type: main_score
|
169 |
+
value: 88.81199829110464
|
170 |
+
task:
|
171 |
+
type: Reranking
|
172 |
+
- dataset:
|
173 |
+
config: default
|
174 |
+
name: MTEB CmedqaRetrieval (default)
|
175 |
+
revision: latest2023
|
176 |
+
split: dev
|
177 |
+
type: C-MTEB/CmedqaRetrieval
|
178 |
+
metrics:
|
179 |
+
- type: map_at_1
|
180 |
+
value: 27.448
|
181 |
+
- type: map_at_10
|
182 |
+
value: 40.794000000000004
|
183 |
+
- type: map_at_100
|
184 |
+
value: 42.606
|
185 |
+
- type: map_at_1000
|
186 |
+
value: 42.711
|
187 |
+
- type: map_at_20
|
188 |
+
value: 41.778
|
189 |
+
- type: map_at_3
|
190 |
+
value: 36.429
|
191 |
+
- type: map_at_5
|
192 |
+
value: 38.841
|
193 |
+
- type: mrr_at_1
|
194 |
+
value: 41.510000000000005
|
195 |
+
- type: mrr_at_10
|
196 |
+
value: 49.986999999999995
|
197 |
+
- type: mrr_at_100
|
198 |
+
value: 50.908
|
199 |
+
- type: mrr_at_1000
|
200 |
+
value: 50.946000000000005
|
201 |
+
- type: mrr_at_20
|
202 |
+
value: 50.531000000000006
|
203 |
+
- type: mrr_at_3
|
204 |
+
value: 47.562
|
205 |
+
- type: mrr_at_5
|
206 |
+
value: 48.882
|
207 |
+
- type: ndcg_at_1
|
208 |
+
value: 41.510000000000005
|
209 |
+
- type: ndcg_at_10
|
210 |
+
value: 47.620000000000005
|
211 |
+
- type: ndcg_at_100
|
212 |
+
value: 54.586999999999996
|
213 |
+
- type: ndcg_at_1000
|
214 |
+
value: 56.324
|
215 |
+
- type: ndcg_at_20
|
216 |
+
value: 50.332
|
217 |
+
- type: ndcg_at_3
|
218 |
+
value: 42.27
|
219 |
+
- type: ndcg_at_5
|
220 |
+
value: 44.421
|
221 |
+
- type: precision_at_1
|
222 |
+
value: 41.510000000000005
|
223 |
+
- type: precision_at_10
|
224 |
+
value: 10.45
|
225 |
+
- type: precision_at_100
|
226 |
+
value: 1.6179999999999999
|
227 |
+
- type: precision_at_1000
|
228 |
+
value: 0.184
|
229 |
+
- type: precision_at_20
|
230 |
+
value: 6.1339999999999995
|
231 |
+
- type: precision_at_3
|
232 |
+
value: 23.823
|
233 |
+
- type: precision_at_5
|
234 |
+
value: 17.089
|
235 |
+
- type: recall_at_1
|
236 |
+
value: 27.448
|
237 |
+
- type: recall_at_10
|
238 |
+
value: 58.629
|
239 |
+
- type: recall_at_100
|
240 |
+
value: 87.26899999999999
|
241 |
+
- type: recall_at_1000
|
242 |
+
value: 98.713
|
243 |
+
- type: recall_at_20
|
244 |
+
value: 67.929
|
245 |
+
- type: recall_at_3
|
246 |
+
value: 42.331
|
247 |
+
- type: recall_at_5
|
248 |
+
value: 49.193999999999996
|
249 |
+
- type: main_score
|
250 |
+
value: 47.620000000000005
|
251 |
+
task:
|
252 |
+
type: Retrieval
|
253 |
+
- dataset:
|
254 |
+
config: default
|
255 |
+
name: MTEB Cmnli (default)
|
256 |
+
revision: latest2023
|
257 |
+
split: validation
|
258 |
+
type: C-MTEB/CMNLI
|
259 |
+
metrics:
|
260 |
+
- type: cos_sim_accuracy
|
261 |
+
value: 91.040288634997
|
262 |
+
- type: cos_sim_accuracy_threshold
|
263 |
+
value: 96.31753556207411
|
264 |
+
- type: cos_sim_ap
|
265 |
+
value: 95.94857244353375
|
266 |
+
- type: cos_sim_f1
|
267 |
+
value: 91.47971901200997
|
268 |
+
- type: cos_sim_f1_threshold
|
269 |
+
value: 96.01236110428391
|
270 |
+
- type: cos_sim_precision
|
271 |
+
value: 88.74477907232358
|
272 |
+
- type: cos_sim_recall
|
273 |
+
value: 94.388590133271
|
274 |
+
- type: dot_accuracy
|
275 |
+
value: 80.7696933253157
|
276 |
+
- type: dot_accuracy_threshold
|
277 |
+
value: 58.4022485296251
|
278 |
+
- type: dot_ap
|
279 |
+
value: 89.17817373664943
|
280 |
+
- type: dot_f1
|
281 |
+
value: 81.62572172534811
|
282 |
+
- type: dot_f1_threshold
|
283 |
+
value: 58.18378730482039
|
284 |
+
- type: dot_precision
|
285 |
+
value: 79.12642669007901
|
286 |
+
- type: dot_recall
|
287 |
+
value: 84.28805237315876
|
288 |
+
- type: euclidean_accuracy
|
289 |
+
value: 90.92002405291642
|
290 |
+
- type: euclidean_accuracy_threshold
|
291 |
+
value: 21.553298629922512
|
292 |
+
- type: euclidean_ap
|
293 |
+
value: 95.90941014786691
|
294 |
+
- type: euclidean_f1
|
295 |
+
value: 91.45241317095173
|
296 |
+
- type: euclidean_f1_threshold
|
297 |
+
value: 22.109074422645463
|
298 |
+
- type: euclidean_precision
|
299 |
+
value: 88.32498366368982
|
300 |
+
- type: euclidean_recall
|
301 |
+
value: 94.80944587327565
|
302 |
+
- type: manhattan_accuracy
|
303 |
+
value: 90.94407696933253
|
304 |
+
- type: manhattan_accuracy_threshold
|
305 |
+
value: 524.1466620016906
|
306 |
+
- type: manhattan_ap
|
307 |
+
value: 95.89310684813798
|
308 |
+
- type: manhattan_f1
|
309 |
+
value: 91.50400541577343
|
310 |
+
- type: manhattan_f1_threshold
|
311 |
+
value: 525.5181014869215
|
312 |
+
- type: manhattan_precision
|
313 |
+
value: 88.4212821631051
|
314 |
+
- type: manhattan_recall
|
315 |
+
value: 94.80944587327565
|
316 |
+
- type: max_accuracy
|
317 |
+
value: 91.040288634997
|
318 |
+
- type: max_ap
|
319 |
+
value: 95.94857244353375
|
320 |
+
- type: max_f1
|
321 |
+
value: 91.50400541577343
|
322 |
+
task:
|
323 |
+
type: PairClassification
|
324 |
+
- dataset:
|
325 |
+
config: default
|
326 |
+
name: MTEB CovidRetrieval (default)
|
327 |
+
revision: latest2023
|
328 |
+
split: dev
|
329 |
+
type: C-MTEB/CovidRetrieval
|
330 |
+
metrics:
|
331 |
+
- type: map_at_1
|
332 |
+
value: 78.82000000000001
|
333 |
+
- type: map_at_10
|
334 |
+
value: 85.51100000000001
|
335 |
+
- type: map_at_100
|
336 |
+
value: 85.67099999999999
|
337 |
+
- type: map_at_1000
|
338 |
+
value: 85.672
|
339 |
+
- type: map_at_20
|
340 |
+
value: 85.641
|
341 |
+
- type: map_at_3
|
342 |
+
value: 84.321
|
343 |
+
- type: map_at_5
|
344 |
+
value: 85.048
|
345 |
+
- type: mrr_at_1
|
346 |
+
value: 78.925
|
347 |
+
- type: mrr_at_10
|
348 |
+
value: 85.548
|
349 |
+
- type: mrr_at_100
|
350 |
+
value: 85.698
|
351 |
+
- type: mrr_at_1000
|
352 |
+
value: 85.699
|
353 |
+
- type: mrr_at_20
|
354 |
+
value: 85.669
|
355 |
+
- type: mrr_at_3
|
356 |
+
value: 84.45700000000001
|
357 |
+
- type: mrr_at_5
|
358 |
+
value: 85.12100000000001
|
359 |
+
- type: ndcg_at_1
|
360 |
+
value: 78.925
|
361 |
+
- type: ndcg_at_10
|
362 |
+
value: 88.359
|
363 |
+
- type: ndcg_at_100
|
364 |
+
value: 88.98899999999999
|
365 |
+
- type: ndcg_at_1000
|
366 |
+
value: 89.017
|
367 |
+
- type: ndcg_at_20
|
368 |
+
value: 88.776
|
369 |
+
- type: ndcg_at_3
|
370 |
+
value: 86.086
|
371 |
+
- type: ndcg_at_5
|
372 |
+
value: 87.336
|
373 |
+
- type: precision_at_1
|
374 |
+
value: 78.925
|
375 |
+
- type: precision_at_10
|
376 |
+
value: 9.789
|
377 |
+
- type: precision_at_100
|
378 |
+
value: 1.0070000000000001
|
379 |
+
- type: precision_at_1000
|
380 |
+
value: 0.101
|
381 |
+
- type: precision_at_20
|
382 |
+
value: 4.979
|
383 |
+
- type: precision_at_3
|
384 |
+
value: 30.488
|
385 |
+
- type: precision_at_5
|
386 |
+
value: 18.925
|
387 |
+
- type: recall_at_1
|
388 |
+
value: 78.82000000000001
|
389 |
+
- type: recall_at_10
|
390 |
+
value: 96.997
|
391 |
+
- type: recall_at_100
|
392 |
+
value: 99.684
|
393 |
+
- type: recall_at_1000
|
394 |
+
value: 99.895
|
395 |
+
- type: recall_at_20
|
396 |
+
value: 98.52499999999999
|
397 |
+
- type: recall_at_3
|
398 |
+
value: 91.01700000000001
|
399 |
+
- type: recall_at_5
|
400 |
+
value: 93.994
|
401 |
+
- type: main_score
|
402 |
+
value: 88.359
|
403 |
+
task:
|
404 |
+
type: Retrieval
|
405 |
+
- dataset:
|
406 |
+
config: default
|
407 |
+
name: MTEB DuRetrieval (default)
|
408 |
+
revision: latest2023
|
409 |
+
split: dev
|
410 |
+
type: C-MTEB/DuRetrieval
|
411 |
+
metrics:
|
412 |
+
- type: map_at_1
|
413 |
+
value: 28.03
|
414 |
+
- type: map_at_10
|
415 |
+
value: 85.60600000000001
|
416 |
+
- type: map_at_100
|
417 |
+
value: 88.14800000000001
|
418 |
+
- type: map_at_1000
|
419 |
+
value: 88.169
|
420 |
+
- type: map_at_20
|
421 |
+
value: 87.591
|
422 |
+
- type: map_at_3
|
423 |
+
value: 60.06
|
424 |
+
- type: map_at_5
|
425 |
+
value: 75.564
|
426 |
+
- type: mrr_at_1
|
427 |
+
value: 94.05
|
428 |
+
- type: mrr_at_10
|
429 |
+
value: 96.043
|
430 |
+
- type: mrr_at_100
|
431 |
+
value: 96.075
|
432 |
+
- type: mrr_at_1000
|
433 |
+
value: 96.077
|
434 |
+
- type: mrr_at_20
|
435 |
+
value: 96.06099999999999
|
436 |
+
- type: mrr_at_3
|
437 |
+
value: 95.875
|
438 |
+
- type: mrr_at_5
|
439 |
+
value: 96.017
|
440 |
+
- type: ndcg_at_1
|
441 |
+
value: 94.05
|
442 |
+
- type: ndcg_at_10
|
443 |
+
value: 91.58800000000001
|
444 |
+
- type: ndcg_at_100
|
445 |
+
value: 93.536
|
446 |
+
- type: ndcg_at_1000
|
447 |
+
value: 93.726
|
448 |
+
- type: ndcg_at_20
|
449 |
+
value: 92.64099999999999
|
450 |
+
- type: ndcg_at_3
|
451 |
+
value: 90.865
|
452 |
+
- type: ndcg_at_5
|
453 |
+
value: 89.972
|
454 |
+
- type: precision_at_1
|
455 |
+
value: 94.05
|
456 |
+
- type: precision_at_10
|
457 |
+
value: 43.19
|
458 |
+
- type: precision_at_100
|
459 |
+
value: 4.859
|
460 |
+
- type: precision_at_1000
|
461 |
+
value: 0.49
|
462 |
+
- type: precision_at_20
|
463 |
+
value: 23.3
|
464 |
+
- type: precision_at_3
|
465 |
+
value: 81.0
|
466 |
+
- type: precision_at_5
|
467 |
+
value: 68.36
|
468 |
+
- type: recall_at_1
|
469 |
+
value: 28.03
|
470 |
+
- type: recall_at_10
|
471 |
+
value: 92.095
|
472 |
+
- type: recall_at_100
|
473 |
+
value: 98.764
|
474 |
+
- type: recall_at_1000
|
475 |
+
value: 99.71
|
476 |
+
- type: recall_at_20
|
477 |
+
value: 95.87
|
478 |
+
- type: recall_at_3
|
479 |
+
value: 61.949
|
480 |
+
- type: recall_at_5
|
481 |
+
value: 79.41
|
482 |
+
- type: main_score
|
483 |
+
value: 91.58800000000001
|
484 |
+
task:
|
485 |
+
type: Retrieval
|
486 |
+
- dataset:
|
487 |
+
config: default
|
488 |
+
name: MTEB EcomRetrieval (default)
|
489 |
+
revision: latest2023
|
490 |
+
split: dev
|
491 |
+
type: C-MTEB/EcomRetrieval
|
492 |
+
metrics:
|
493 |
+
- type: map_at_1
|
494 |
+
value: 58.599999999999994
|
495 |
+
- type: map_at_10
|
496 |
+
value: 68.88499999999999
|
497 |
+
- type: map_at_100
|
498 |
+
value: 69.269
|
499 |
+
- type: map_at_1000
|
500 |
+
value: 69.274
|
501 |
+
- type: map_at_20
|
502 |
+
value: 69.17699999999999
|
503 |
+
- type: map_at_3
|
504 |
+
value: 66.167
|
505 |
+
- type: map_at_5
|
506 |
+
value: 68.082
|
507 |
+
- type: mrr_at_1
|
508 |
+
value: 58.599999999999994
|
509 |
+
- type: mrr_at_10
|
510 |
+
value: 68.88499999999999
|
511 |
+
- type: mrr_at_100
|
512 |
+
value: 69.269
|
513 |
+
- type: mrr_at_1000
|
514 |
+
value: 69.274
|
515 |
+
- type: mrr_at_20
|
516 |
+
value: 69.17699999999999
|
517 |
+
- type: mrr_at_3
|
518 |
+
value: 66.167
|
519 |
+
- type: mrr_at_5
|
520 |
+
value: 68.082
|
521 |
+
- type: ndcg_at_1
|
522 |
+
value: 58.599999999999994
|
523 |
+
- type: ndcg_at_10
|
524 |
+
value: 74.018
|
525 |
+
- type: ndcg_at_100
|
526 |
+
value: 75.72
|
527 |
+
- type: ndcg_at_1000
|
528 |
+
value: 75.851
|
529 |
+
- type: ndcg_at_20
|
530 |
+
value: 75.08
|
531 |
+
- type: ndcg_at_3
|
532 |
+
value: 68.64
|
533 |
+
- type: ndcg_at_5
|
534 |
+
value: 72.075
|
535 |
+
- type: precision_at_1
|
536 |
+
value: 58.599999999999994
|
537 |
+
- type: precision_at_10
|
538 |
+
value: 9.01
|
539 |
+
- type: precision_at_100
|
540 |
+
value: 0.9769999999999999
|
541 |
+
- type: precision_at_1000
|
542 |
+
value: 0.099
|
543 |
+
- type: precision_at_20
|
544 |
+
value: 4.715
|
545 |
+
- type: precision_at_3
|
546 |
+
value: 25.267
|
547 |
+
- type: precision_at_5
|
548 |
+
value: 16.82
|
549 |
+
- type: recall_at_1
|
550 |
+
value: 58.599999999999994
|
551 |
+
- type: recall_at_10
|
552 |
+
value: 90.10000000000001
|
553 |
+
- type: recall_at_100
|
554 |
+
value: 97.7
|
555 |
+
- type: recall_at_1000
|
556 |
+
value: 98.7
|
557 |
+
- type: recall_at_20
|
558 |
+
value: 94.3
|
559 |
+
- type: recall_at_3
|
560 |
+
value: 75.8
|
561 |
+
- type: recall_at_5
|
562 |
+
value: 84.1
|
563 |
+
- type: main_score
|
564 |
+
value: 74.018
|
565 |
+
task:
|
566 |
+
type: Retrieval
|
567 |
+
- dataset:
|
568 |
+
config: default
|
569 |
+
name: MTEB IFlyTek (default)
|
570 |
+
revision: latest2023
|
571 |
+
split: validation
|
572 |
+
type: C-MTEB/IFlyTek-classification
|
573 |
+
metrics:
|
574 |
+
- type: accuracy
|
575 |
+
value: 55.79838399384378
|
576 |
+
- type: accuracy_stderr
|
577 |
+
value: 0.273588131352537
|
578 |
+
- type: f1
|
579 |
+
value: 42.23811666656058
|
580 |
+
- type: f1_stderr
|
581 |
+
value: 0.2317340030986553
|
582 |
+
- type: main_score
|
583 |
+
value: 55.79838399384378
|
584 |
+
task:
|
585 |
+
type: Classification
|
586 |
+
- dataset:
|
587 |
+
config: default
|
588 |
+
name: MTEB JDReview (default)
|
589 |
+
revision: latest2023
|
590 |
+
split: test
|
591 |
+
type: C-MTEB/JDReview-classification
|
592 |
+
metrics:
|
593 |
+
- type: accuracy
|
594 |
+
value: 89.11819887429644
|
595 |
+
- type: accuracy_stderr
|
596 |
+
value: 1.5149440328845287
|
597 |
+
- type: ap
|
598 |
+
value: 60.17445086411222
|
599 |
+
- type: ap_stderr
|
600 |
+
value: 3.4864563160430384
|
601 |
+
- type: f1
|
602 |
+
value: 84.14324891240739
|
603 |
+
- type: f1_stderr
|
604 |
+
value: 1.804154595730216
|
605 |
+
- type: main_score
|
606 |
+
value: 89.11819887429644
|
607 |
+
task:
|
608 |
+
type: Classification
|
609 |
+
- dataset:
|
610 |
+
config: default
|
611 |
+
name: MTEB LCQMC (default)
|
612 |
+
revision: latest2023
|
613 |
+
split: test
|
614 |
+
type: C-MTEB/LCQMC
|
615 |
+
metrics:
|
616 |
+
- type: cosine_pearson
|
617 |
+
value: 80.86541640109346
|
618 |
+
- type: cosine_spearman
|
619 |
+
value: 79.60409318173409
|
620 |
+
- type: manhattan_pearson
|
621 |
+
value: 81.12725142112909
|
622 |
+
- type: manhattan_spearman
|
623 |
+
value: 79.61120096401483
|
624 |
+
- type: euclidean_pearson
|
625 |
+
value: 81.1558178459699
|
626 |
+
- type: euclidean_spearman
|
627 |
+
value: 79.63206760369867
|
628 |
+
- type: main_score
|
629 |
+
value: 79.60409318173409
|
630 |
+
task:
|
631 |
+
type: STS
|
632 |
+
- dataset:
|
633 |
+
config: default
|
634 |
+
name: MTEB MMarcoReranking (default)
|
635 |
+
revision: latest2023
|
636 |
+
split: dev
|
637 |
+
type: C-MTEB/Mmarco-reranking
|
638 |
+
metrics:
|
639 |
+
- type: map
|
640 |
+
value: 30.290346963620866
|
641 |
+
- type: mrr
|
642 |
+
value: 29.661507936507935
|
643 |
+
- type: main_score
|
644 |
+
value: 30.290346963620866
|
645 |
+
task:
|
646 |
+
type: Reranking
|
647 |
+
- dataset:
|
648 |
+
config: default
|
649 |
+
name: MTEB MMarcoRetrieval (default)
|
650 |
+
revision: latest2023
|
651 |
+
split: dev
|
652 |
+
type: C-MTEB/MMarcoRetrieval
|
653 |
+
metrics:
|
654 |
+
- type: map_at_1
|
655 |
+
value: 67.801
|
656 |
+
- type: map_at_10
|
657 |
+
value: 76.771
|
658 |
+
- type: map_at_100
|
659 |
+
value: 77.08
|
660 |
+
- type: map_at_1000
|
661 |
+
value: 77.091
|
662 |
+
- type: map_at_20
|
663 |
+
value: 76.982
|
664 |
+
- type: map_at_3
|
665 |
+
value: 75.035
|
666 |
+
- type: map_at_5
|
667 |
+
value: 76.171
|
668 |
+
- type: mrr_at_1
|
669 |
+
value: 70.057
|
670 |
+
- type: mrr_at_10
|
671 |
+
value: 77.387
|
672 |
+
- type: mrr_at_100
|
673 |
+
value: 77.65100000000001
|
674 |
+
- type: mrr_at_1000
|
675 |
+
value: 77.661
|
676 |
+
- type: mrr_at_20
|
677 |
+
value: 77.566
|
678 |
+
- type: mrr_at_3
|
679 |
+
value: 75.90299999999999
|
680 |
+
- type: mrr_at_5
|
681 |
+
value: 76.848
|
682 |
+
- type: ndcg_at_1
|
683 |
+
value: 70.057
|
684 |
+
- type: ndcg_at_10
|
685 |
+
value: 80.37100000000001
|
686 |
+
- type: ndcg_at_100
|
687 |
+
value: 81.71300000000001
|
688 |
+
- type: ndcg_at_1000
|
689 |
+
value: 81.982
|
690 |
+
- type: ndcg_at_20
|
691 |
+
value: 81.074
|
692 |
+
- type: ndcg_at_3
|
693 |
+
value: 77.12
|
694 |
+
- type: ndcg_at_5
|
695 |
+
value: 79.00500000000001
|
696 |
+
- type: precision_at_1
|
697 |
+
value: 70.057
|
698 |
+
- type: precision_at_10
|
699 |
+
value: 9.643
|
700 |
+
- type: precision_at_100
|
701 |
+
value: 1.031
|
702 |
+
- type: precision_at_1000
|
703 |
+
value: 0.105
|
704 |
+
- type: precision_at_20
|
705 |
+
value: 4.973000000000001
|
706 |
+
- type: precision_at_3
|
707 |
+
value: 28.959000000000003
|
708 |
+
- type: precision_at_5
|
709 |
+
value: 18.384
|
710 |
+
- type: recall_at_1
|
711 |
+
value: 67.801
|
712 |
+
- type: recall_at_10
|
713 |
+
value: 90.821
|
714 |
+
- type: recall_at_100
|
715 |
+
value: 96.809
|
716 |
+
- type: recall_at_1000
|
717 |
+
value: 98.87899999999999
|
718 |
+
- type: recall_at_20
|
719 |
+
value: 93.49300000000001
|
720 |
+
- type: recall_at_3
|
721 |
+
value: 82.26
|
722 |
+
- type: recall_at_5
|
723 |
+
value: 86.725
|
724 |
+
- type: main_score
|
725 |
+
value: 80.37100000000001
|
726 |
+
task:
|
727 |
+
type: Retrieval
|
728 |
+
- dataset:
|
729 |
+
config: zh-CN
|
730 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
731 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
732 |
+
split: test
|
733 |
+
type: mteb/amazon_massive_intent
|
734 |
+
metrics:
|
735 |
+
- type: accuracy
|
736 |
+
value: 81.4862138533961
|
737 |
+
- type: accuracy_stderr
|
738 |
+
value: 1.024666951162929
|
739 |
+
- type: f1
|
740 |
+
value: 78.57865898474617
|
741 |
+
- type: f1_stderr
|
742 |
+
value: 1.1662766217911715
|
743 |
+
- type: main_score
|
744 |
+
value: 81.4862138533961
|
745 |
+
task:
|
746 |
+
type: Classification
|
747 |
+
- dataset:
|
748 |
+
config: zh-CN
|
749 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
750 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
751 |
+
split: test
|
752 |
+
type: mteb/amazon_massive_scenario
|
753 |
+
metrics:
|
754 |
+
- type: accuracy
|
755 |
+
value: 86.43913920645595
|
756 |
+
- type: accuracy_stderr
|
757 |
+
value: 0.6198364524624383
|
758 |
+
- type: f1
|
759 |
+
value: 85.45514450914429
|
760 |
+
- type: f1_stderr
|
761 |
+
value: 0.775295463718716
|
762 |
+
- type: main_score
|
763 |
+
value: 86.43913920645595
|
764 |
+
task:
|
765 |
+
type: Classification
|
766 |
+
- dataset:
|
767 |
+
config: default
|
768 |
+
name: MTEB MedicalRetrieval (default)
|
769 |
+
revision: latest2023
|
770 |
+
split: dev
|
771 |
+
type: C-MTEB/MedicalRetrieval
|
772 |
+
metrics:
|
773 |
+
- type: map_at_1
|
774 |
+
value: 60.0
|
775 |
+
- type: map_at_10
|
776 |
+
value: 66.673
|
777 |
+
- type: map_at_100
|
778 |
+
value: 67.239
|
779 |
+
- type: map_at_1000
|
780 |
+
value: 67.26299999999999
|
781 |
+
- type: map_at_20
|
782 |
+
value: 67.01899999999999
|
783 |
+
- type: map_at_3
|
784 |
+
value: 65.333
|
785 |
+
- type: map_at_5
|
786 |
+
value: 66.063
|
787 |
+
- type: mrr_at_1
|
788 |
+
value: 60.099999999999994
|
789 |
+
- type: mrr_at_10
|
790 |
+
value: 66.739
|
791 |
+
- type: mrr_at_100
|
792 |
+
value: 67.306
|
793 |
+
- type: mrr_at_1000
|
794 |
+
value: 67.33
|
795 |
+
- type: mrr_at_20
|
796 |
+
value: 67.086
|
797 |
+
- type: mrr_at_3
|
798 |
+
value: 65.4
|
799 |
+
- type: mrr_at_5
|
800 |
+
value: 66.13
|
801 |
+
- type: ndcg_at_1
|
802 |
+
value: 60.0
|
803 |
+
- type: ndcg_at_10
|
804 |
+
value: 69.786
|
805 |
+
- type: ndcg_at_100
|
806 |
+
value: 72.693
|
807 |
+
- type: ndcg_at_1000
|
808 |
+
value: 73.373
|
809 |
+
- type: ndcg_at_20
|
810 |
+
value: 71.032
|
811 |
+
- type: ndcg_at_3
|
812 |
+
value: 67.024
|
813 |
+
- type: ndcg_at_5
|
814 |
+
value: 68.34
|
815 |
+
- type: precision_at_1
|
816 |
+
value: 60.0
|
817 |
+
- type: precision_at_10
|
818 |
+
value: 7.95
|
819 |
+
- type: precision_at_100
|
820 |
+
value: 0.935
|
821 |
+
- type: precision_at_1000
|
822 |
+
value: 0.099
|
823 |
+
- type: precision_at_20
|
824 |
+
value: 4.22
|
825 |
+
- type: precision_at_3
|
826 |
+
value: 23.967
|
827 |
+
- type: precision_at_5
|
828 |
+
value: 15.02
|
829 |
+
- type: recall_at_1
|
830 |
+
value: 60.0
|
831 |
+
- type: recall_at_10
|
832 |
+
value: 79.5
|
833 |
+
- type: recall_at_100
|
834 |
+
value: 93.5
|
835 |
+
- type: recall_at_1000
|
836 |
+
value: 98.9
|
837 |
+
- type: recall_at_20
|
838 |
+
value: 84.39999999999999
|
839 |
+
- type: recall_at_3
|
840 |
+
value: 71.89999999999999
|
841 |
+
- type: recall_at_5
|
842 |
+
value: 75.1
|
843 |
+
- type: main_score
|
844 |
+
value: 69.786
|
845 |
+
task:
|
846 |
+
type: Retrieval
|
847 |
+
- dataset:
|
848 |
+
config: default
|
849 |
+
name: MTEB MultilingualSentiment (default)
|
850 |
+
revision: latest2023
|
851 |
+
split: validation
|
852 |
+
type: C-MTEB/MultilingualSentiment-classification
|
853 |
+
metrics:
|
854 |
+
- type: accuracy
|
855 |
+
value: 81.19666666666667
|
856 |
+
- type: accuracy_stderr
|
857 |
+
value: 0.6507175526550155
|
858 |
+
- type: f1
|
859 |
+
value: 81.3717120301294
|
860 |
+
- type: f1_stderr
|
861 |
+
value: 0.629161893845245
|
862 |
+
- type: main_score
|
863 |
+
value: 81.19666666666667
|
864 |
+
task:
|
865 |
+
type: Classification
|
866 |
+
- dataset:
|
867 |
+
config: default
|
868 |
+
name: MTEB Ocnli (default)
|
869 |
+
revision: latest2023
|
870 |
+
split: validation
|
871 |
+
type: C-MTEB/OCNLI
|
872 |
+
metrics:
|
873 |
+
- type: cos_sim_accuracy
|
874 |
+
value: 89.92961559285327
|
875 |
+
- type: cos_sim_accuracy_threshold
|
876 |
+
value: 95.72410743295985
|
877 |
+
- type: cos_sim_ap
|
878 |
+
value: 94.04072585697942
|
879 |
+
- type: cos_sim_f1
|
880 |
+
value: 90.6060606060606
|
881 |
+
- type: cos_sim_f1_threshold
|
882 |
+
value: 95.71085030120679
|
883 |
+
- type: cos_sim_precision
|
884 |
+
value: 86.83446272991287
|
885 |
+
- type: cos_sim_recall
|
886 |
+
value: 94.72016895459345
|
887 |
+
- type: dot_accuracy
|
888 |
+
value: 84.29886302111532
|
889 |
+
- type: dot_accuracy_threshold
|
890 |
+
value: 58.39834018444028
|
891 |
+
- type: dot_ap
|
892 |
+
value: 90.71149047430606
|
893 |
+
- type: dot_f1
|
894 |
+
value: 84.83263598326361
|
895 |
+
- type: dot_f1_threshold
|
896 |
+
value: 58.39834018444028
|
897 |
+
- type: dot_precision
|
898 |
+
value: 84.04145077720207
|
899 |
+
- type: dot_recall
|
900 |
+
value: 85.6388595564942
|
901 |
+
- type: euclidean_accuracy
|
902 |
+
value: 89.87547374120194
|
903 |
+
- type: euclidean_accuracy_threshold
|
904 |
+
value: 22.827705768877962
|
905 |
+
- type: euclidean_ap
|
906 |
+
value: 93.87312138426815
|
907 |
+
- type: euclidean_f1
|
908 |
+
value: 90.5982905982906
|
909 |
+
- type: euclidean_f1_threshold
|
910 |
+
value: 22.940558234199905
|
911 |
+
- type: euclidean_precision
|
912 |
+
value: 86.468330134357
|
913 |
+
- type: euclidean_recall
|
914 |
+
value: 95.14255543822597
|
915 |
+
- type: manhattan_accuracy
|
916 |
+
value: 89.44233892799134
|
917 |
+
- type: manhattan_accuracy_threshold
|
918 |
+
value: 544.6256417358975
|
919 |
+
- type: manhattan_ap
|
920 |
+
value: 93.8313800715528
|
921 |
+
- type: manhattan_f1
|
922 |
+
value: 90.16641452344932
|
923 |
+
- type: manhattan_f1_threshold
|
924 |
+
value: 544.6256417358975
|
925 |
+
- type: manhattan_precision
|
926 |
+
value: 86.2934362934363
|
927 |
+
- type: manhattan_recall
|
928 |
+
value: 94.40337909186906
|
929 |
+
- type: max_accuracy
|
930 |
+
value: 89.92961559285327
|
931 |
+
- type: max_ap
|
932 |
+
value: 94.04072585697942
|
933 |
+
- type: max_f1
|
934 |
+
value: 90.6060606060606
|
935 |
+
task:
|
936 |
+
type: PairClassification
|
937 |
+
- dataset:
|
938 |
+
config: default
|
939 |
+
name: MTEB OnlineShopping (default)
|
940 |
+
revision: latest2023
|
941 |
+
split: test
|
942 |
+
type: C-MTEB/OnlineShopping-classification
|
943 |
+
metrics:
|
944 |
+
- type: accuracy
|
945 |
+
value: 93.83999999999999
|
946 |
+
- type: accuracy_stderr
|
947 |
+
value: 0.4521061822182879
|
948 |
+
- type: ap
|
949 |
+
value: 92.19373645628713
|
950 |
+
- type: ap_stderr
|
951 |
+
value: 0.2927396159644918
|
952 |
+
- type: f1
|
953 |
+
value: 93.83158946571204
|
954 |
+
- type: f1_stderr
|
955 |
+
value: 0.4472553159438725
|
956 |
+
- type: main_score
|
957 |
+
value: 93.83999999999999
|
958 |
+
task:
|
959 |
+
type: Classification
|
960 |
+
- dataset:
|
961 |
+
config: default
|
962 |
+
name: MTEB PAWSX (default)
|
963 |
+
revision: latest2023
|
964 |
+
split: test
|
965 |
+
type: C-MTEB/PAWSX
|
966 |
+
metrics:
|
967 |
+
- type: cosine_pearson
|
968 |
+
value: 50.30680596662101
|
969 |
+
- type: cosine_spearman
|
970 |
+
value: 52.41534063346883
|
971 |
+
- type: manhattan_pearson
|
972 |
+
value: 51.81137421589127
|
973 |
+
- type: manhattan_spearman
|
974 |
+
value: 52.40332176267904
|
975 |
+
- type: euclidean_pearson
|
976 |
+
value: 51.842454511431235
|
977 |
+
- type: euclidean_spearman
|
978 |
+
value: 52.4062829337432
|
979 |
+
- type: main_score
|
980 |
+
value: 52.41534063346883
|
981 |
+
task:
|
982 |
+
type: STS
|
983 |
+
- dataset:
|
984 |
+
config: default
|
985 |
+
name: MTEB QBQTC (default)
|
986 |
+
revision: latest2023
|
987 |
+
split: test
|
988 |
+
type: C-MTEB/QBQTC
|
989 |
+
metrics:
|
990 |
+
- type: cosine_pearson
|
991 |
+
value: 58.31070289198933
|
992 |
+
- type: cosine_spearman
|
993 |
+
value: 57.966010447080684
|
994 |
+
- type: manhattan_pearson
|
995 |
+
value: 54.99874211888254
|
996 |
+
- type: manhattan_spearman
|
997 |
+
value: 57.796012247889195
|
998 |
+
- type: euclidean_pearson
|
999 |
+
value: 55.138798573277455
|
1000 |
+
- type: euclidean_spearman
|
1001 |
+
value: 57.95150876116391
|
1002 |
+
- type: main_score
|
1003 |
+
value: 57.966010447080684
|
1004 |
+
task:
|
1005 |
+
type: STS
|
1006 |
+
- dataset:
|
1007 |
+
config: zh
|
1008 |
+
name: MTEB STS22 (zh)
|
1009 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
1010 |
+
split: test
|
1011 |
+
type: mteb/sts22-crosslingual-sts
|
1012 |
+
metrics:
|
1013 |
+
- type: cosine_pearson
|
1014 |
+
value: 75.26028549682404
|
1015 |
+
- type: cosine_spearman
|
1016 |
+
value: 73.9002967678025
|
1017 |
+
- type: manhattan_pearson
|
1018 |
+
value: 73.47220514464013
|
1019 |
+
- type: manhattan_spearman
|
1020 |
+
value: 73.74093326288234
|
1021 |
+
- type: euclidean_pearson
|
1022 |
+
value: 73.59040445366989
|
1023 |
+
- type: euclidean_spearman
|
1024 |
+
value: 73.9002967678025
|
1025 |
+
- type: main_score
|
1026 |
+
value: 73.9002967678025
|
1027 |
+
task:
|
1028 |
+
type: STS
|
1029 |
+
- dataset:
|
1030 |
+
config: default
|
1031 |
+
name: MTEB STSB (default)
|
1032 |
+
revision: latest2023
|
1033 |
+
split: test
|
1034 |
+
type: C-MTEB/STSB
|
1035 |
+
metrics:
|
1036 |
+
- type: cosine_pearson
|
1037 |
+
value: 78.17081373176123
|
1038 |
+
- type: cosine_spearman
|
1039 |
+
value: 78.61566426272397
|
1040 |
+
- type: manhattan_pearson
|
1041 |
+
value: 77.66643088697434
|
1042 |
+
- type: manhattan_spearman
|
1043 |
+
value: 78.94692354474782
|
1044 |
+
- type: euclidean_pearson
|
1045 |
+
value: 77.69471041307843
|
1046 |
+
- type: euclidean_spearman
|
1047 |
+
value: 78.92513847741967
|
1048 |
+
- type: main_score
|
1049 |
+
value: 78.61566426272397
|
1050 |
+
task:
|
1051 |
+
type: STS
|
1052 |
+
- dataset:
|
1053 |
+
config: default
|
1054 |
+
name: MTEB T2Reranking (default)
|
1055 |
+
revision: latest2023
|
1056 |
+
split: dev
|
1057 |
+
type: C-MTEB/T2Reranking
|
1058 |
+
metrics:
|
1059 |
+
- type: map
|
1060 |
+
value: 68.13018101639273
|
1061 |
+
- type: mrr
|
1062 |
+
value: 79.13973922902494
|
1063 |
+
- type: main_score
|
1064 |
+
value: 68.13018101639273
|
1065 |
+
task:
|
1066 |
+
type: Reranking
|
1067 |
+
- dataset:
|
1068 |
+
config: default
|
1069 |
+
name: MTEB T2Retrieval (default)
|
1070 |
+
revision: latest2023
|
1071 |
+
split: dev
|
1072 |
+
type: C-MTEB/T2Retrieval
|
1073 |
+
metrics:
|
1074 |
+
- type: map_at_1
|
1075 |
+
value: 28.591
|
1076 |
+
- type: map_at_10
|
1077 |
+
value: 80.979
|
1078 |
+
- type: map_at_100
|
1079 |
+
value: 84.411
|
1080 |
+
- type: map_at_1000
|
1081 |
+
value: 84.458
|
1082 |
+
- type: map_at_20
|
1083 |
+
value: 83.68100000000001
|
1084 |
+
- type: map_at_3
|
1085 |
+
value: 56.967999999999996
|
1086 |
+
- type: map_at_5
|
1087 |
+
value: 70.098
|
1088 |
+
- type: mrr_at_1
|
1089 |
+
value: 92.12700000000001
|
1090 |
+
- type: mrr_at_10
|
1091 |
+
value: 94.094
|
1092 |
+
- type: mrr_at_100
|
1093 |
+
value: 94.161
|
1094 |
+
- type: mrr_at_1000
|
1095 |
+
value: 94.164
|
1096 |
+
- type: mrr_at_20
|
1097 |
+
value: 94.14
|
1098 |
+
- type: mrr_at_3
|
1099 |
+
value: 93.753
|
1100 |
+
- type: mrr_at_5
|
1101 |
+
value: 93.98100000000001
|
1102 |
+
- type: ndcg_at_1
|
1103 |
+
value: 92.12700000000001
|
1104 |
+
- type: ndcg_at_10
|
1105 |
+
value: 87.586
|
1106 |
+
- type: ndcg_at_100
|
1107 |
+
value: 90.58500000000001
|
1108 |
+
- type: ndcg_at_1000
|
1109 |
+
value: 91.05
|
1110 |
+
- type: ndcg_at_20
|
1111 |
+
value: 89.132
|
1112 |
+
- type: ndcg_at_3
|
1113 |
+
value: 88.86800000000001
|
1114 |
+
- type: ndcg_at_5
|
1115 |
+
value: 87.673
|
1116 |
+
- type: precision_at_1
|
1117 |
+
value: 92.12700000000001
|
1118 |
+
- type: precision_at_10
|
1119 |
+
value: 43.35
|
1120 |
+
- type: precision_at_100
|
1121 |
+
value: 5.06
|
1122 |
+
- type: precision_at_1000
|
1123 |
+
value: 0.517
|
1124 |
+
- type: precision_at_20
|
1125 |
+
value: 23.895
|
1126 |
+
- type: precision_at_3
|
1127 |
+
value: 77.664
|
1128 |
+
- type: precision_at_5
|
1129 |
+
value: 65.231
|
1130 |
+
- type: recall_at_1
|
1131 |
+
value: 28.591
|
1132 |
+
- type: recall_at_10
|
1133 |
+
value: 86.342
|
1134 |
+
- type: recall_at_100
|
1135 |
+
value: 96.274
|
1136 |
+
- type: recall_at_1000
|
1137 |
+
value: 98.666
|
1138 |
+
- type: recall_at_20
|
1139 |
+
value: 91.741
|
1140 |
+
- type: recall_at_3
|
1141 |
+
value: 58.386
|
1142 |
+
- type: recall_at_5
|
1143 |
+
value: 72.942
|
1144 |
+
- type: main_score
|
1145 |
+
value: 87.586
|
1146 |
+
task:
|
1147 |
+
type: Retrieval
|
1148 |
+
- dataset:
|
1149 |
+
config: default
|
1150 |
+
name: MTEB TNews (default)
|
1151 |
+
revision: latest2023
|
1152 |
+
split: validation
|
1153 |
+
type: C-MTEB/TNews-classification
|
1154 |
+
metrics:
|
1155 |
+
- type: accuracy
|
1156 |
+
value: 58.057
|
1157 |
+
- type: accuracy_stderr
|
1158 |
+
value: 0.4056365368159032
|
1159 |
+
- type: f1
|
1160 |
+
value: 56.16542257610506
|
1161 |
+
- type: f1_stderr
|
1162 |
+
value: 0.49560443919264746
|
1163 |
+
- type: main_score
|
1164 |
+
value: 58.057
|
1165 |
+
task:
|
1166 |
+
type: Classification
|
1167 |
+
- dataset:
|
1168 |
+
config: default
|
1169 |
+
name: MTEB ThuNewsClusteringP2P (default)
|
1170 |
+
revision: latest2023
|
1171 |
+
split: test
|
1172 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
1173 |
+
metrics:
|
1174 |
+
- type: v_measure
|
1175 |
+
value: 83.43086890900754
|
1176 |
+
- type: v_measure_std
|
1177 |
+
value: 1.3242733220406704
|
1178 |
+
- type: main_score
|
1179 |
+
value: 83.43086890900754
|
1180 |
+
task:
|
1181 |
+
type: Clustering
|
1182 |
+
- dataset:
|
1183 |
+
config: default
|
1184 |
+
name: MTEB ThuNewsClusteringS2S (default)
|
1185 |
+
revision: latest2023
|
1186 |
+
split: test
|
1187 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
1188 |
+
metrics:
|
1189 |
+
- type: v_measure
|
1190 |
+
value: 80.17922689954183
|
1191 |
+
- type: v_measure_std
|
1192 |
+
value: 2.1732975942130612
|
1193 |
+
- type: main_score
|
1194 |
+
value: 80.17922689954183
|
1195 |
+
task:
|
1196 |
+
type: Clustering
|
1197 |
+
- dataset:
|
1198 |
+
config: default
|
1199 |
+
name: MTEB VideoRetrieval (default)
|
1200 |
+
revision: latest2023
|
1201 |
+
split: dev
|
1202 |
+
type: C-MTEB/VideoRetrieval
|
1203 |
+
metrics:
|
1204 |
+
- type: map_at_1
|
1205 |
+
value: 68.60000000000001
|
1206 |
+
- type: map_at_10
|
1207 |
+
value: 77.518
|
1208 |
+
- type: map_at_100
|
1209 |
+
value: 77.815
|
1210 |
+
- type: map_at_1000
|
1211 |
+
value: 77.82
|
1212 |
+
- type: map_at_20
|
1213 |
+
value: 77.73299999999999
|
1214 |
+
- type: map_at_3
|
1215 |
+
value: 76.167
|
1216 |
+
- type: map_at_5
|
1217 |
+
value: 76.932
|
1218 |
+
- type: mrr_at_1
|
1219 |
+
value: 68.60000000000001
|
1220 |
+
- type: mrr_at_10
|
1221 |
+
value: 77.518
|
1222 |
+
- type: mrr_at_100
|
1223 |
+
value: 77.815
|
1224 |
+
- type: mrr_at_1000
|
1225 |
+
value: 77.82
|
1226 |
+
- type: mrr_at_20
|
1227 |
+
value: 77.73299999999999
|
1228 |
+
- type: mrr_at_3
|
1229 |
+
value: 76.167
|
1230 |
+
- type: mrr_at_5
|
1231 |
+
value: 76.932
|
1232 |
+
- type: ndcg_at_1
|
1233 |
+
value: 68.60000000000001
|
1234 |
+
- type: ndcg_at_10
|
1235 |
+
value: 81.339
|
1236 |
+
- type: ndcg_at_100
|
1237 |
+
value: 82.646
|
1238 |
+
- type: ndcg_at_1000
|
1239 |
+
value: 82.76599999999999
|
1240 |
+
- type: ndcg_at_20
|
1241 |
+
value: 82.107
|
1242 |
+
- type: ndcg_at_3
|
1243 |
+
value: 78.569
|
1244 |
+
- type: ndcg_at_5
|
1245 |
+
value: 79.937
|
1246 |
+
- type: precision_at_1
|
1247 |
+
value: 68.60000000000001
|
1248 |
+
- type: precision_at_10
|
1249 |
+
value: 9.31
|
1250 |
+
- type: precision_at_100
|
1251 |
+
value: 0.989
|
1252 |
+
- type: precision_at_1000
|
1253 |
+
value: 0.1
|
1254 |
+
- type: precision_at_20
|
1255 |
+
value: 4.805000000000001
|
1256 |
+
- type: precision_at_3
|
1257 |
+
value: 28.499999999999996
|
1258 |
+
- type: precision_at_5
|
1259 |
+
value: 17.76
|
1260 |
+
- type: recall_at_1
|
1261 |
+
value: 68.60000000000001
|
1262 |
+
- type: recall_at_10
|
1263 |
+
value: 93.10000000000001
|
1264 |
+
- type: recall_at_100
|
1265 |
+
value: 98.9
|
1266 |
+
- type: recall_at_1000
|
1267 |
+
value: 99.8
|
1268 |
+
- type: recall_at_20
|
1269 |
+
value: 96.1
|
1270 |
+
- type: recall_at_3
|
1271 |
+
value: 85.5
|
1272 |
+
- type: recall_at_5
|
1273 |
+
value: 88.8
|
1274 |
+
- type: main_score
|
1275 |
+
value: 81.339
|
1276 |
+
task:
|
1277 |
+
type: Retrieval
|
1278 |
+
- dataset:
|
1279 |
+
config: default
|
1280 |
+
name: MTEB Waimai (default)
|
1281 |
+
revision: latest2023
|
1282 |
+
split: test
|
1283 |
+
type: C-MTEB/waimai-classification
|
1284 |
+
metrics:
|
1285 |
+
- type: accuracy
|
1286 |
+
value: 90.63000000000001
|
1287 |
+
- type: accuracy_stderr
|
1288 |
+
value: 0.49203658400570216
|
1289 |
+
- type: ap
|
1290 |
+
value: 77.93466200571231
|
1291 |
+
- type: ap_stderr
|
1292 |
+
value: 1.2006502477223735
|
1293 |
+
- type: f1
|
1294 |
+
value: 89.36361097500829
|
1295 |
+
- type: f1_stderr
|
1296 |
+
value: 0.43660966359249054
|
1297 |
+
- type: main_score
|
1298 |
+
value: 90.63000000000001
|
1299 |
+
task:
|
1300 |
+
type: Classification
|
1301 |
+
tags:
|
1302 |
+
- mteb
|
1303 |
+
---
|
1304 |
+
|
1305 |
+
# Quark-Emb-8B
|
1306 |
+
|
1307 |
+
- Chinese Text Embedding Model developed by Alibaba Quark-LLM Team. Details will be published later.
|