zhilinw6 commited on
Commit
62958fd
1 Parent(s): 854bc65

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +1307 -0
README.md ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: Quark-Emb-8B
4
+ results:
5
+ - dataset:
6
+ config: default
7
+ name: MTEB AFQMC (default)
8
+ revision: latest2023
9
+ split: validation
10
+ type: C-MTEB/AFQMC
11
+ metrics:
12
+ - type: cosine_pearson
13
+ value: 52.87704664791064
14
+ - type: cosine_spearman
15
+ value: 53.567003436521375
16
+ - type: manhattan_pearson
17
+ value: 52.07472780799189
18
+ - type: manhattan_spearman
19
+ value: 53.5368469974003
20
+ - type: euclidean_pearson
21
+ value: 52.074186684368016
22
+ - type: euclidean_spearman
23
+ value: 53.515536447088074
24
+ - type: main_score
25
+ value: 53.567003436521375
26
+ task:
27
+ type: STS
28
+ - dataset:
29
+ config: default
30
+ name: MTEB ATEC (default)
31
+ revision: latest2023
32
+ split: test
33
+ type: C-MTEB/ATEC
34
+ metrics:
35
+ - type: cosine_pearson
36
+ value: 59.13301114775821
37
+ - type: cosine_spearman
38
+ value: 53.42152760117668
39
+ - type: manhattan_pearson
40
+ value: 60.05185745744783
41
+ - type: manhattan_spearman
42
+ value: 53.36914545708813
43
+ - type: euclidean_pearson
44
+ value: 60.17725014927802
45
+ - type: euclidean_spearman
46
+ value: 53.431110991334485
47
+ - type: main_score
48
+ value: 53.42152760117668
49
+ task:
50
+ type: STS
51
+ - dataset:
52
+ config: zh
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
55
+ split: test
56
+ type: mteb/amazon_reviews_multi
57
+ metrics:
58
+ - type: accuracy
59
+ value: 54.74600000000001
60
+ - type: accuracy_stderr
61
+ value: 1.060492338491892
62
+ - type: f1
63
+ value: 53.49846112279175
64
+ - type: f1_stderr
65
+ value: 1.729174511160517
66
+ - type: main_score
67
+ value: 54.74600000000001
68
+ task:
69
+ type: Classification
70
+ - dataset:
71
+ config: zh
72
+ name: MTEB AmazonReviewsClassification (zh)
73
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
74
+ split: validation
75
+ type: mteb/amazon_reviews_multi
76
+ metrics:
77
+ - type: accuracy
78
+ value: 53.468
79
+ - type: accuracy_stderr
80
+ value: 1.0129639677698308
81
+ - type: f1
82
+ value: 52.21987651679265
83
+ - type: f1_stderr
84
+ value: 1.7016822177116173
85
+ - type: main_score
86
+ value: 53.468
87
+ task:
88
+ type: Classification
89
+ - dataset:
90
+ config: default
91
+ name: MTEB BQ (default)
92
+ revision: latest2023
93
+ split: test
94
+ type: C-MTEB/BQ
95
+ metrics:
96
+ - type: cosine_pearson
97
+ value: 69.640366232364
98
+ - type: cosine_spearman
99
+ value: 70.65881213017273
100
+ - type: manhattan_pearson
101
+ value: 67.76837799100343
102
+ - type: manhattan_spearman
103
+ value: 70.5046111101055
104
+ - type: euclidean_pearson
105
+ value: 67.83004194158737
106
+ - type: euclidean_spearman
107
+ value: 70.60927547682859
108
+ - type: main_score
109
+ value: 70.65881213017273
110
+ task:
111
+ type: STS
112
+ - dataset:
113
+ config: default
114
+ name: MTEB CLSClusteringP2P (default)
115
+ revision: latest2023
116
+ split: test
117
+ type: C-MTEB/CLSClusteringP2P
118
+ metrics:
119
+ - type: v_measure
120
+ value: 62.32714079793593
121
+ - type: v_measure_std
122
+ value: 1.5782386182731478
123
+ - type: main_score
124
+ value: 62.32714079793593
125
+ task:
126
+ type: Clustering
127
+ - dataset:
128
+ config: default
129
+ name: MTEB CLSClusteringS2S (default)
130
+ revision: latest2023
131
+ split: test
132
+ type: C-MTEB/CLSClusteringS2S
133
+ metrics:
134
+ - type: v_measure
135
+ value: 59.29532340833129
136
+ - type: v_measure_std
137
+ value: 1.5258658358346424
138
+ - type: main_score
139
+ value: 59.29532340833129
140
+ task:
141
+ type: Clustering
142
+ - dataset:
143
+ config: default
144
+ name: MTEB CMedQAv1-reranking (default)
145
+ revision: latest2023
146
+ split: test
147
+ type: C-MTEB/CMedQAv1-reranking
148
+ metrics:
149
+ - type: map
150
+ value: 88.02263756085355
151
+ - type: mrr
152
+ value: 90.18928571428572
153
+ - type: main_score
154
+ value: 88.02263756085355
155
+ task:
156
+ type: Reranking
157
+ - dataset:
158
+ config: default
159
+ name: MTEB CMedQAv2-reranking (default)
160
+ revision: latest2023
161
+ split: test
162
+ type: C-MTEB/CMedQAv2-reranking
163
+ metrics:
164
+ - type: map
165
+ value: 88.81199829110464
166
+ - type: mrr
167
+ value: 90.81817460317461
168
+ - type: main_score
169
+ value: 88.81199829110464
170
+ task:
171
+ type: Reranking
172
+ - dataset:
173
+ config: default
174
+ name: MTEB CmedqaRetrieval (default)
175
+ revision: latest2023
176
+ split: dev
177
+ type: C-MTEB/CmedqaRetrieval
178
+ metrics:
179
+ - type: map_at_1
180
+ value: 27.448
181
+ - type: map_at_10
182
+ value: 40.794000000000004
183
+ - type: map_at_100
184
+ value: 42.606
185
+ - type: map_at_1000
186
+ value: 42.711
187
+ - type: map_at_20
188
+ value: 41.778
189
+ - type: map_at_3
190
+ value: 36.429
191
+ - type: map_at_5
192
+ value: 38.841
193
+ - type: mrr_at_1
194
+ value: 41.510000000000005
195
+ - type: mrr_at_10
196
+ value: 49.986999999999995
197
+ - type: mrr_at_100
198
+ value: 50.908
199
+ - type: mrr_at_1000
200
+ value: 50.946000000000005
201
+ - type: mrr_at_20
202
+ value: 50.531000000000006
203
+ - type: mrr_at_3
204
+ value: 47.562
205
+ - type: mrr_at_5
206
+ value: 48.882
207
+ - type: ndcg_at_1
208
+ value: 41.510000000000005
209
+ - type: ndcg_at_10
210
+ value: 47.620000000000005
211
+ - type: ndcg_at_100
212
+ value: 54.586999999999996
213
+ - type: ndcg_at_1000
214
+ value: 56.324
215
+ - type: ndcg_at_20
216
+ value: 50.332
217
+ - type: ndcg_at_3
218
+ value: 42.27
219
+ - type: ndcg_at_5
220
+ value: 44.421
221
+ - type: precision_at_1
222
+ value: 41.510000000000005
223
+ - type: precision_at_10
224
+ value: 10.45
225
+ - type: precision_at_100
226
+ value: 1.6179999999999999
227
+ - type: precision_at_1000
228
+ value: 0.184
229
+ - type: precision_at_20
230
+ value: 6.1339999999999995
231
+ - type: precision_at_3
232
+ value: 23.823
233
+ - type: precision_at_5
234
+ value: 17.089
235
+ - type: recall_at_1
236
+ value: 27.448
237
+ - type: recall_at_10
238
+ value: 58.629
239
+ - type: recall_at_100
240
+ value: 87.26899999999999
241
+ - type: recall_at_1000
242
+ value: 98.713
243
+ - type: recall_at_20
244
+ value: 67.929
245
+ - type: recall_at_3
246
+ value: 42.331
247
+ - type: recall_at_5
248
+ value: 49.193999999999996
249
+ - type: main_score
250
+ value: 47.620000000000005
251
+ task:
252
+ type: Retrieval
253
+ - dataset:
254
+ config: default
255
+ name: MTEB Cmnli (default)
256
+ revision: latest2023
257
+ split: validation
258
+ type: C-MTEB/CMNLI
259
+ metrics:
260
+ - type: cos_sim_accuracy
261
+ value: 91.040288634997
262
+ - type: cos_sim_accuracy_threshold
263
+ value: 96.31753556207411
264
+ - type: cos_sim_ap
265
+ value: 95.94857244353375
266
+ - type: cos_sim_f1
267
+ value: 91.47971901200997
268
+ - type: cos_sim_f1_threshold
269
+ value: 96.01236110428391
270
+ - type: cos_sim_precision
271
+ value: 88.74477907232358
272
+ - type: cos_sim_recall
273
+ value: 94.388590133271
274
+ - type: dot_accuracy
275
+ value: 80.7696933253157
276
+ - type: dot_accuracy_threshold
277
+ value: 58.4022485296251
278
+ - type: dot_ap
279
+ value: 89.17817373664943
280
+ - type: dot_f1
281
+ value: 81.62572172534811
282
+ - type: dot_f1_threshold
283
+ value: 58.18378730482039
284
+ - type: dot_precision
285
+ value: 79.12642669007901
286
+ - type: dot_recall
287
+ value: 84.28805237315876
288
+ - type: euclidean_accuracy
289
+ value: 90.92002405291642
290
+ - type: euclidean_accuracy_threshold
291
+ value: 21.553298629922512
292
+ - type: euclidean_ap
293
+ value: 95.90941014786691
294
+ - type: euclidean_f1
295
+ value: 91.45241317095173
296
+ - type: euclidean_f1_threshold
297
+ value: 22.109074422645463
298
+ - type: euclidean_precision
299
+ value: 88.32498366368982
300
+ - type: euclidean_recall
301
+ value: 94.80944587327565
302
+ - type: manhattan_accuracy
303
+ value: 90.94407696933253
304
+ - type: manhattan_accuracy_threshold
305
+ value: 524.1466620016906
306
+ - type: manhattan_ap
307
+ value: 95.89310684813798
308
+ - type: manhattan_f1
309
+ value: 91.50400541577343
310
+ - type: manhattan_f1_threshold
311
+ value: 525.5181014869215
312
+ - type: manhattan_precision
313
+ value: 88.4212821631051
314
+ - type: manhattan_recall
315
+ value: 94.80944587327565
316
+ - type: max_accuracy
317
+ value: 91.040288634997
318
+ - type: max_ap
319
+ value: 95.94857244353375
320
+ - type: max_f1
321
+ value: 91.50400541577343
322
+ task:
323
+ type: PairClassification
324
+ - dataset:
325
+ config: default
326
+ name: MTEB CovidRetrieval (default)
327
+ revision: latest2023
328
+ split: dev
329
+ type: C-MTEB/CovidRetrieval
330
+ metrics:
331
+ - type: map_at_1
332
+ value: 78.82000000000001
333
+ - type: map_at_10
334
+ value: 85.51100000000001
335
+ - type: map_at_100
336
+ value: 85.67099999999999
337
+ - type: map_at_1000
338
+ value: 85.672
339
+ - type: map_at_20
340
+ value: 85.641
341
+ - type: map_at_3
342
+ value: 84.321
343
+ - type: map_at_5
344
+ value: 85.048
345
+ - type: mrr_at_1
346
+ value: 78.925
347
+ - type: mrr_at_10
348
+ value: 85.548
349
+ - type: mrr_at_100
350
+ value: 85.698
351
+ - type: mrr_at_1000
352
+ value: 85.699
353
+ - type: mrr_at_20
354
+ value: 85.669
355
+ - type: mrr_at_3
356
+ value: 84.45700000000001
357
+ - type: mrr_at_5
358
+ value: 85.12100000000001
359
+ - type: ndcg_at_1
360
+ value: 78.925
361
+ - type: ndcg_at_10
362
+ value: 88.359
363
+ - type: ndcg_at_100
364
+ value: 88.98899999999999
365
+ - type: ndcg_at_1000
366
+ value: 89.017
367
+ - type: ndcg_at_20
368
+ value: 88.776
369
+ - type: ndcg_at_3
370
+ value: 86.086
371
+ - type: ndcg_at_5
372
+ value: 87.336
373
+ - type: precision_at_1
374
+ value: 78.925
375
+ - type: precision_at_10
376
+ value: 9.789
377
+ - type: precision_at_100
378
+ value: 1.0070000000000001
379
+ - type: precision_at_1000
380
+ value: 0.101
381
+ - type: precision_at_20
382
+ value: 4.979
383
+ - type: precision_at_3
384
+ value: 30.488
385
+ - type: precision_at_5
386
+ value: 18.925
387
+ - type: recall_at_1
388
+ value: 78.82000000000001
389
+ - type: recall_at_10
390
+ value: 96.997
391
+ - type: recall_at_100
392
+ value: 99.684
393
+ - type: recall_at_1000
394
+ value: 99.895
395
+ - type: recall_at_20
396
+ value: 98.52499999999999
397
+ - type: recall_at_3
398
+ value: 91.01700000000001
399
+ - type: recall_at_5
400
+ value: 93.994
401
+ - type: main_score
402
+ value: 88.359
403
+ task:
404
+ type: Retrieval
405
+ - dataset:
406
+ config: default
407
+ name: MTEB DuRetrieval (default)
408
+ revision: latest2023
409
+ split: dev
410
+ type: C-MTEB/DuRetrieval
411
+ metrics:
412
+ - type: map_at_1
413
+ value: 28.03
414
+ - type: map_at_10
415
+ value: 85.60600000000001
416
+ - type: map_at_100
417
+ value: 88.14800000000001
418
+ - type: map_at_1000
419
+ value: 88.169
420
+ - type: map_at_20
421
+ value: 87.591
422
+ - type: map_at_3
423
+ value: 60.06
424
+ - type: map_at_5
425
+ value: 75.564
426
+ - type: mrr_at_1
427
+ value: 94.05
428
+ - type: mrr_at_10
429
+ value: 96.043
430
+ - type: mrr_at_100
431
+ value: 96.075
432
+ - type: mrr_at_1000
433
+ value: 96.077
434
+ - type: mrr_at_20
435
+ value: 96.06099999999999
436
+ - type: mrr_at_3
437
+ value: 95.875
438
+ - type: mrr_at_5
439
+ value: 96.017
440
+ - type: ndcg_at_1
441
+ value: 94.05
442
+ - type: ndcg_at_10
443
+ value: 91.58800000000001
444
+ - type: ndcg_at_100
445
+ value: 93.536
446
+ - type: ndcg_at_1000
447
+ value: 93.726
448
+ - type: ndcg_at_20
449
+ value: 92.64099999999999
450
+ - type: ndcg_at_3
451
+ value: 90.865
452
+ - type: ndcg_at_5
453
+ value: 89.972
454
+ - type: precision_at_1
455
+ value: 94.05
456
+ - type: precision_at_10
457
+ value: 43.19
458
+ - type: precision_at_100
459
+ value: 4.859
460
+ - type: precision_at_1000
461
+ value: 0.49
462
+ - type: precision_at_20
463
+ value: 23.3
464
+ - type: precision_at_3
465
+ value: 81.0
466
+ - type: precision_at_5
467
+ value: 68.36
468
+ - type: recall_at_1
469
+ value: 28.03
470
+ - type: recall_at_10
471
+ value: 92.095
472
+ - type: recall_at_100
473
+ value: 98.764
474
+ - type: recall_at_1000
475
+ value: 99.71
476
+ - type: recall_at_20
477
+ value: 95.87
478
+ - type: recall_at_3
479
+ value: 61.949
480
+ - type: recall_at_5
481
+ value: 79.41
482
+ - type: main_score
483
+ value: 91.58800000000001
484
+ task:
485
+ type: Retrieval
486
+ - dataset:
487
+ config: default
488
+ name: MTEB EcomRetrieval (default)
489
+ revision: latest2023
490
+ split: dev
491
+ type: C-MTEB/EcomRetrieval
492
+ metrics:
493
+ - type: map_at_1
494
+ value: 58.599999999999994
495
+ - type: map_at_10
496
+ value: 68.88499999999999
497
+ - type: map_at_100
498
+ value: 69.269
499
+ - type: map_at_1000
500
+ value: 69.274
501
+ - type: map_at_20
502
+ value: 69.17699999999999
503
+ - type: map_at_3
504
+ value: 66.167
505
+ - type: map_at_5
506
+ value: 68.082
507
+ - type: mrr_at_1
508
+ value: 58.599999999999994
509
+ - type: mrr_at_10
510
+ value: 68.88499999999999
511
+ - type: mrr_at_100
512
+ value: 69.269
513
+ - type: mrr_at_1000
514
+ value: 69.274
515
+ - type: mrr_at_20
516
+ value: 69.17699999999999
517
+ - type: mrr_at_3
518
+ value: 66.167
519
+ - type: mrr_at_5
520
+ value: 68.082
521
+ - type: ndcg_at_1
522
+ value: 58.599999999999994
523
+ - type: ndcg_at_10
524
+ value: 74.018
525
+ - type: ndcg_at_100
526
+ value: 75.72
527
+ - type: ndcg_at_1000
528
+ value: 75.851
529
+ - type: ndcg_at_20
530
+ value: 75.08
531
+ - type: ndcg_at_3
532
+ value: 68.64
533
+ - type: ndcg_at_5
534
+ value: 72.075
535
+ - type: precision_at_1
536
+ value: 58.599999999999994
537
+ - type: precision_at_10
538
+ value: 9.01
539
+ - type: precision_at_100
540
+ value: 0.9769999999999999
541
+ - type: precision_at_1000
542
+ value: 0.099
543
+ - type: precision_at_20
544
+ value: 4.715
545
+ - type: precision_at_3
546
+ value: 25.267
547
+ - type: precision_at_5
548
+ value: 16.82
549
+ - type: recall_at_1
550
+ value: 58.599999999999994
551
+ - type: recall_at_10
552
+ value: 90.10000000000001
553
+ - type: recall_at_100
554
+ value: 97.7
555
+ - type: recall_at_1000
556
+ value: 98.7
557
+ - type: recall_at_20
558
+ value: 94.3
559
+ - type: recall_at_3
560
+ value: 75.8
561
+ - type: recall_at_5
562
+ value: 84.1
563
+ - type: main_score
564
+ value: 74.018
565
+ task:
566
+ type: Retrieval
567
+ - dataset:
568
+ config: default
569
+ name: MTEB IFlyTek (default)
570
+ revision: latest2023
571
+ split: validation
572
+ type: C-MTEB/IFlyTek-classification
573
+ metrics:
574
+ - type: accuracy
575
+ value: 55.79838399384378
576
+ - type: accuracy_stderr
577
+ value: 0.273588131352537
578
+ - type: f1
579
+ value: 42.23811666656058
580
+ - type: f1_stderr
581
+ value: 0.2317340030986553
582
+ - type: main_score
583
+ value: 55.79838399384378
584
+ task:
585
+ type: Classification
586
+ - dataset:
587
+ config: default
588
+ name: MTEB JDReview (default)
589
+ revision: latest2023
590
+ split: test
591
+ type: C-MTEB/JDReview-classification
592
+ metrics:
593
+ - type: accuracy
594
+ value: 89.11819887429644
595
+ - type: accuracy_stderr
596
+ value: 1.5149440328845287
597
+ - type: ap
598
+ value: 60.17445086411222
599
+ - type: ap_stderr
600
+ value: 3.4864563160430384
601
+ - type: f1
602
+ value: 84.14324891240739
603
+ - type: f1_stderr
604
+ value: 1.804154595730216
605
+ - type: main_score
606
+ value: 89.11819887429644
607
+ task:
608
+ type: Classification
609
+ - dataset:
610
+ config: default
611
+ name: MTEB LCQMC (default)
612
+ revision: latest2023
613
+ split: test
614
+ type: C-MTEB/LCQMC
615
+ metrics:
616
+ - type: cosine_pearson
617
+ value: 80.86541640109346
618
+ - type: cosine_spearman
619
+ value: 79.60409318173409
620
+ - type: manhattan_pearson
621
+ value: 81.12725142112909
622
+ - type: manhattan_spearman
623
+ value: 79.61120096401483
624
+ - type: euclidean_pearson
625
+ value: 81.1558178459699
626
+ - type: euclidean_spearman
627
+ value: 79.63206760369867
628
+ - type: main_score
629
+ value: 79.60409318173409
630
+ task:
631
+ type: STS
632
+ - dataset:
633
+ config: default
634
+ name: MTEB MMarcoReranking (default)
635
+ revision: latest2023
636
+ split: dev
637
+ type: C-MTEB/Mmarco-reranking
638
+ metrics:
639
+ - type: map
640
+ value: 30.290346963620866
641
+ - type: mrr
642
+ value: 29.661507936507935
643
+ - type: main_score
644
+ value: 30.290346963620866
645
+ task:
646
+ type: Reranking
647
+ - dataset:
648
+ config: default
649
+ name: MTEB MMarcoRetrieval (default)
650
+ revision: latest2023
651
+ split: dev
652
+ type: C-MTEB/MMarcoRetrieval
653
+ metrics:
654
+ - type: map_at_1
655
+ value: 67.801
656
+ - type: map_at_10
657
+ value: 76.771
658
+ - type: map_at_100
659
+ value: 77.08
660
+ - type: map_at_1000
661
+ value: 77.091
662
+ - type: map_at_20
663
+ value: 76.982
664
+ - type: map_at_3
665
+ value: 75.035
666
+ - type: map_at_5
667
+ value: 76.171
668
+ - type: mrr_at_1
669
+ value: 70.057
670
+ - type: mrr_at_10
671
+ value: 77.387
672
+ - type: mrr_at_100
673
+ value: 77.65100000000001
674
+ - type: mrr_at_1000
675
+ value: 77.661
676
+ - type: mrr_at_20
677
+ value: 77.566
678
+ - type: mrr_at_3
679
+ value: 75.90299999999999
680
+ - type: mrr_at_5
681
+ value: 76.848
682
+ - type: ndcg_at_1
683
+ value: 70.057
684
+ - type: ndcg_at_10
685
+ value: 80.37100000000001
686
+ - type: ndcg_at_100
687
+ value: 81.71300000000001
688
+ - type: ndcg_at_1000
689
+ value: 81.982
690
+ - type: ndcg_at_20
691
+ value: 81.074
692
+ - type: ndcg_at_3
693
+ value: 77.12
694
+ - type: ndcg_at_5
695
+ value: 79.00500000000001
696
+ - type: precision_at_1
697
+ value: 70.057
698
+ - type: precision_at_10
699
+ value: 9.643
700
+ - type: precision_at_100
701
+ value: 1.031
702
+ - type: precision_at_1000
703
+ value: 0.105
704
+ - type: precision_at_20
705
+ value: 4.973000000000001
706
+ - type: precision_at_3
707
+ value: 28.959000000000003
708
+ - type: precision_at_5
709
+ value: 18.384
710
+ - type: recall_at_1
711
+ value: 67.801
712
+ - type: recall_at_10
713
+ value: 90.821
714
+ - type: recall_at_100
715
+ value: 96.809
716
+ - type: recall_at_1000
717
+ value: 98.87899999999999
718
+ - type: recall_at_20
719
+ value: 93.49300000000001
720
+ - type: recall_at_3
721
+ value: 82.26
722
+ - type: recall_at_5
723
+ value: 86.725
724
+ - type: main_score
725
+ value: 80.37100000000001
726
+ task:
727
+ type: Retrieval
728
+ - dataset:
729
+ config: zh-CN
730
+ name: MTEB MassiveIntentClassification (zh-CN)
731
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
732
+ split: test
733
+ type: mteb/amazon_massive_intent
734
+ metrics:
735
+ - type: accuracy
736
+ value: 81.4862138533961
737
+ - type: accuracy_stderr
738
+ value: 1.024666951162929
739
+ - type: f1
740
+ value: 78.57865898474617
741
+ - type: f1_stderr
742
+ value: 1.1662766217911715
743
+ - type: main_score
744
+ value: 81.4862138533961
745
+ task:
746
+ type: Classification
747
+ - dataset:
748
+ config: zh-CN
749
+ name: MTEB MassiveScenarioClassification (zh-CN)
750
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
751
+ split: test
752
+ type: mteb/amazon_massive_scenario
753
+ metrics:
754
+ - type: accuracy
755
+ value: 86.43913920645595
756
+ - type: accuracy_stderr
757
+ value: 0.6198364524624383
758
+ - type: f1
759
+ value: 85.45514450914429
760
+ - type: f1_stderr
761
+ value: 0.775295463718716
762
+ - type: main_score
763
+ value: 86.43913920645595
764
+ task:
765
+ type: Classification
766
+ - dataset:
767
+ config: default
768
+ name: MTEB MedicalRetrieval (default)
769
+ revision: latest2023
770
+ split: dev
771
+ type: C-MTEB/MedicalRetrieval
772
+ metrics:
773
+ - type: map_at_1
774
+ value: 60.0
775
+ - type: map_at_10
776
+ value: 66.673
777
+ - type: map_at_100
778
+ value: 67.239
779
+ - type: map_at_1000
780
+ value: 67.26299999999999
781
+ - type: map_at_20
782
+ value: 67.01899999999999
783
+ - type: map_at_3
784
+ value: 65.333
785
+ - type: map_at_5
786
+ value: 66.063
787
+ - type: mrr_at_1
788
+ value: 60.099999999999994
789
+ - type: mrr_at_10
790
+ value: 66.739
791
+ - type: mrr_at_100
792
+ value: 67.306
793
+ - type: mrr_at_1000
794
+ value: 67.33
795
+ - type: mrr_at_20
796
+ value: 67.086
797
+ - type: mrr_at_3
798
+ value: 65.4
799
+ - type: mrr_at_5
800
+ value: 66.13
801
+ - type: ndcg_at_1
802
+ value: 60.0
803
+ - type: ndcg_at_10
804
+ value: 69.786
805
+ - type: ndcg_at_100
806
+ value: 72.693
807
+ - type: ndcg_at_1000
808
+ value: 73.373
809
+ - type: ndcg_at_20
810
+ value: 71.032
811
+ - type: ndcg_at_3
812
+ value: 67.024
813
+ - type: ndcg_at_5
814
+ value: 68.34
815
+ - type: precision_at_1
816
+ value: 60.0
817
+ - type: precision_at_10
818
+ value: 7.95
819
+ - type: precision_at_100
820
+ value: 0.935
821
+ - type: precision_at_1000
822
+ value: 0.099
823
+ - type: precision_at_20
824
+ value: 4.22
825
+ - type: precision_at_3
826
+ value: 23.967
827
+ - type: precision_at_5
828
+ value: 15.02
829
+ - type: recall_at_1
830
+ value: 60.0
831
+ - type: recall_at_10
832
+ value: 79.5
833
+ - type: recall_at_100
834
+ value: 93.5
835
+ - type: recall_at_1000
836
+ value: 98.9
837
+ - type: recall_at_20
838
+ value: 84.39999999999999
839
+ - type: recall_at_3
840
+ value: 71.89999999999999
841
+ - type: recall_at_5
842
+ value: 75.1
843
+ - type: main_score
844
+ value: 69.786
845
+ task:
846
+ type: Retrieval
847
+ - dataset:
848
+ config: default
849
+ name: MTEB MultilingualSentiment (default)
850
+ revision: latest2023
851
+ split: validation
852
+ type: C-MTEB/MultilingualSentiment-classification
853
+ metrics:
854
+ - type: accuracy
855
+ value: 81.19666666666667
856
+ - type: accuracy_stderr
857
+ value: 0.6507175526550155
858
+ - type: f1
859
+ value: 81.3717120301294
860
+ - type: f1_stderr
861
+ value: 0.629161893845245
862
+ - type: main_score
863
+ value: 81.19666666666667
864
+ task:
865
+ type: Classification
866
+ - dataset:
867
+ config: default
868
+ name: MTEB Ocnli (default)
869
+ revision: latest2023
870
+ split: validation
871
+ type: C-MTEB/OCNLI
872
+ metrics:
873
+ - type: cos_sim_accuracy
874
+ value: 89.92961559285327
875
+ - type: cos_sim_accuracy_threshold
876
+ value: 95.72410743295985
877
+ - type: cos_sim_ap
878
+ value: 94.04072585697942
879
+ - type: cos_sim_f1
880
+ value: 90.6060606060606
881
+ - type: cos_sim_f1_threshold
882
+ value: 95.71085030120679
883
+ - type: cos_sim_precision
884
+ value: 86.83446272991287
885
+ - type: cos_sim_recall
886
+ value: 94.72016895459345
887
+ - type: dot_accuracy
888
+ value: 84.29886302111532
889
+ - type: dot_accuracy_threshold
890
+ value: 58.39834018444028
891
+ - type: dot_ap
892
+ value: 90.71149047430606
893
+ - type: dot_f1
894
+ value: 84.83263598326361
895
+ - type: dot_f1_threshold
896
+ value: 58.39834018444028
897
+ - type: dot_precision
898
+ value: 84.04145077720207
899
+ - type: dot_recall
900
+ value: 85.6388595564942
901
+ - type: euclidean_accuracy
902
+ value: 89.87547374120194
903
+ - type: euclidean_accuracy_threshold
904
+ value: 22.827705768877962
905
+ - type: euclidean_ap
906
+ value: 93.87312138426815
907
+ - type: euclidean_f1
908
+ value: 90.5982905982906
909
+ - type: euclidean_f1_threshold
910
+ value: 22.940558234199905
911
+ - type: euclidean_precision
912
+ value: 86.468330134357
913
+ - type: euclidean_recall
914
+ value: 95.14255543822597
915
+ - type: manhattan_accuracy
916
+ value: 89.44233892799134
917
+ - type: manhattan_accuracy_threshold
918
+ value: 544.6256417358975
919
+ - type: manhattan_ap
920
+ value: 93.8313800715528
921
+ - type: manhattan_f1
922
+ value: 90.16641452344932
923
+ - type: manhattan_f1_threshold
924
+ value: 544.6256417358975
925
+ - type: manhattan_precision
926
+ value: 86.2934362934363
927
+ - type: manhattan_recall
928
+ value: 94.40337909186906
929
+ - type: max_accuracy
930
+ value: 89.92961559285327
931
+ - type: max_ap
932
+ value: 94.04072585697942
933
+ - type: max_f1
934
+ value: 90.6060606060606
935
+ task:
936
+ type: PairClassification
937
+ - dataset:
938
+ config: default
939
+ name: MTEB OnlineShopping (default)
940
+ revision: latest2023
941
+ split: test
942
+ type: C-MTEB/OnlineShopping-classification
943
+ metrics:
944
+ - type: accuracy
945
+ value: 93.83999999999999
946
+ - type: accuracy_stderr
947
+ value: 0.4521061822182879
948
+ - type: ap
949
+ value: 92.19373645628713
950
+ - type: ap_stderr
951
+ value: 0.2927396159644918
952
+ - type: f1
953
+ value: 93.83158946571204
954
+ - type: f1_stderr
955
+ value: 0.4472553159438725
956
+ - type: main_score
957
+ value: 93.83999999999999
958
+ task:
959
+ type: Classification
960
+ - dataset:
961
+ config: default
962
+ name: MTEB PAWSX (default)
963
+ revision: latest2023
964
+ split: test
965
+ type: C-MTEB/PAWSX
966
+ metrics:
967
+ - type: cosine_pearson
968
+ value: 50.30680596662101
969
+ - type: cosine_spearman
970
+ value: 52.41534063346883
971
+ - type: manhattan_pearson
972
+ value: 51.81137421589127
973
+ - type: manhattan_spearman
974
+ value: 52.40332176267904
975
+ - type: euclidean_pearson
976
+ value: 51.842454511431235
977
+ - type: euclidean_spearman
978
+ value: 52.4062829337432
979
+ - type: main_score
980
+ value: 52.41534063346883
981
+ task:
982
+ type: STS
983
+ - dataset:
984
+ config: default
985
+ name: MTEB QBQTC (default)
986
+ revision: latest2023
987
+ split: test
988
+ type: C-MTEB/QBQTC
989
+ metrics:
990
+ - type: cosine_pearson
991
+ value: 58.31070289198933
992
+ - type: cosine_spearman
993
+ value: 57.966010447080684
994
+ - type: manhattan_pearson
995
+ value: 54.99874211888254
996
+ - type: manhattan_spearman
997
+ value: 57.796012247889195
998
+ - type: euclidean_pearson
999
+ value: 55.138798573277455
1000
+ - type: euclidean_spearman
1001
+ value: 57.95150876116391
1002
+ - type: main_score
1003
+ value: 57.966010447080684
1004
+ task:
1005
+ type: STS
1006
+ - dataset:
1007
+ config: zh
1008
+ name: MTEB STS22 (zh)
1009
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1010
+ split: test
1011
+ type: mteb/sts22-crosslingual-sts
1012
+ metrics:
1013
+ - type: cosine_pearson
1014
+ value: 75.26028549682404
1015
+ - type: cosine_spearman
1016
+ value: 73.9002967678025
1017
+ - type: manhattan_pearson
1018
+ value: 73.47220514464013
1019
+ - type: manhattan_spearman
1020
+ value: 73.74093326288234
1021
+ - type: euclidean_pearson
1022
+ value: 73.59040445366989
1023
+ - type: euclidean_spearman
1024
+ value: 73.9002967678025
1025
+ - type: main_score
1026
+ value: 73.9002967678025
1027
+ task:
1028
+ type: STS
1029
+ - dataset:
1030
+ config: default
1031
+ name: MTEB STSB (default)
1032
+ revision: latest2023
1033
+ split: test
1034
+ type: C-MTEB/STSB
1035
+ metrics:
1036
+ - type: cosine_pearson
1037
+ value: 78.17081373176123
1038
+ - type: cosine_spearman
1039
+ value: 78.61566426272397
1040
+ - type: manhattan_pearson
1041
+ value: 77.66643088697434
1042
+ - type: manhattan_spearman
1043
+ value: 78.94692354474782
1044
+ - type: euclidean_pearson
1045
+ value: 77.69471041307843
1046
+ - type: euclidean_spearman
1047
+ value: 78.92513847741967
1048
+ - type: main_score
1049
+ value: 78.61566426272397
1050
+ task:
1051
+ type: STS
1052
+ - dataset:
1053
+ config: default
1054
+ name: MTEB T2Reranking (default)
1055
+ revision: latest2023
1056
+ split: dev
1057
+ type: C-MTEB/T2Reranking
1058
+ metrics:
1059
+ - type: map
1060
+ value: 68.13018101639273
1061
+ - type: mrr
1062
+ value: 79.13973922902494
1063
+ - type: main_score
1064
+ value: 68.13018101639273
1065
+ task:
1066
+ type: Reranking
1067
+ - dataset:
1068
+ config: default
1069
+ name: MTEB T2Retrieval (default)
1070
+ revision: latest2023
1071
+ split: dev
1072
+ type: C-MTEB/T2Retrieval
1073
+ metrics:
1074
+ - type: map_at_1
1075
+ value: 28.591
1076
+ - type: map_at_10
1077
+ value: 80.979
1078
+ - type: map_at_100
1079
+ value: 84.411
1080
+ - type: map_at_1000
1081
+ value: 84.458
1082
+ - type: map_at_20
1083
+ value: 83.68100000000001
1084
+ - type: map_at_3
1085
+ value: 56.967999999999996
1086
+ - type: map_at_5
1087
+ value: 70.098
1088
+ - type: mrr_at_1
1089
+ value: 92.12700000000001
1090
+ - type: mrr_at_10
1091
+ value: 94.094
1092
+ - type: mrr_at_100
1093
+ value: 94.161
1094
+ - type: mrr_at_1000
1095
+ value: 94.164
1096
+ - type: mrr_at_20
1097
+ value: 94.14
1098
+ - type: mrr_at_3
1099
+ value: 93.753
1100
+ - type: mrr_at_5
1101
+ value: 93.98100000000001
1102
+ - type: ndcg_at_1
1103
+ value: 92.12700000000001
1104
+ - type: ndcg_at_10
1105
+ value: 87.586
1106
+ - type: ndcg_at_100
1107
+ value: 90.58500000000001
1108
+ - type: ndcg_at_1000
1109
+ value: 91.05
1110
+ - type: ndcg_at_20
1111
+ value: 89.132
1112
+ - type: ndcg_at_3
1113
+ value: 88.86800000000001
1114
+ - type: ndcg_at_5
1115
+ value: 87.673
1116
+ - type: precision_at_1
1117
+ value: 92.12700000000001
1118
+ - type: precision_at_10
1119
+ value: 43.35
1120
+ - type: precision_at_100
1121
+ value: 5.06
1122
+ - type: precision_at_1000
1123
+ value: 0.517
1124
+ - type: precision_at_20
1125
+ value: 23.895
1126
+ - type: precision_at_3
1127
+ value: 77.664
1128
+ - type: precision_at_5
1129
+ value: 65.231
1130
+ - type: recall_at_1
1131
+ value: 28.591
1132
+ - type: recall_at_10
1133
+ value: 86.342
1134
+ - type: recall_at_100
1135
+ value: 96.274
1136
+ - type: recall_at_1000
1137
+ value: 98.666
1138
+ - type: recall_at_20
1139
+ value: 91.741
1140
+ - type: recall_at_3
1141
+ value: 58.386
1142
+ - type: recall_at_5
1143
+ value: 72.942
1144
+ - type: main_score
1145
+ value: 87.586
1146
+ task:
1147
+ type: Retrieval
1148
+ - dataset:
1149
+ config: default
1150
+ name: MTEB TNews (default)
1151
+ revision: latest2023
1152
+ split: validation
1153
+ type: C-MTEB/TNews-classification
1154
+ metrics:
1155
+ - type: accuracy
1156
+ value: 58.057
1157
+ - type: accuracy_stderr
1158
+ value: 0.4056365368159032
1159
+ - type: f1
1160
+ value: 56.16542257610506
1161
+ - type: f1_stderr
1162
+ value: 0.49560443919264746
1163
+ - type: main_score
1164
+ value: 58.057
1165
+ task:
1166
+ type: Classification
1167
+ - dataset:
1168
+ config: default
1169
+ name: MTEB ThuNewsClusteringP2P (default)
1170
+ revision: latest2023
1171
+ split: test
1172
+ type: C-MTEB/ThuNewsClusteringP2P
1173
+ metrics:
1174
+ - type: v_measure
1175
+ value: 83.43086890900754
1176
+ - type: v_measure_std
1177
+ value: 1.3242733220406704
1178
+ - type: main_score
1179
+ value: 83.43086890900754
1180
+ task:
1181
+ type: Clustering
1182
+ - dataset:
1183
+ config: default
1184
+ name: MTEB ThuNewsClusteringS2S (default)
1185
+ revision: latest2023
1186
+ split: test
1187
+ type: C-MTEB/ThuNewsClusteringS2S
1188
+ metrics:
1189
+ - type: v_measure
1190
+ value: 80.17922689954183
1191
+ - type: v_measure_std
1192
+ value: 2.1732975942130612
1193
+ - type: main_score
1194
+ value: 80.17922689954183
1195
+ task:
1196
+ type: Clustering
1197
+ - dataset:
1198
+ config: default
1199
+ name: MTEB VideoRetrieval (default)
1200
+ revision: latest2023
1201
+ split: dev
1202
+ type: C-MTEB/VideoRetrieval
1203
+ metrics:
1204
+ - type: map_at_1
1205
+ value: 68.60000000000001
1206
+ - type: map_at_10
1207
+ value: 77.518
1208
+ - type: map_at_100
1209
+ value: 77.815
1210
+ - type: map_at_1000
1211
+ value: 77.82
1212
+ - type: map_at_20
1213
+ value: 77.73299999999999
1214
+ - type: map_at_3
1215
+ value: 76.167
1216
+ - type: map_at_5
1217
+ value: 76.932
1218
+ - type: mrr_at_1
1219
+ value: 68.60000000000001
1220
+ - type: mrr_at_10
1221
+ value: 77.518
1222
+ - type: mrr_at_100
1223
+ value: 77.815
1224
+ - type: mrr_at_1000
1225
+ value: 77.82
1226
+ - type: mrr_at_20
1227
+ value: 77.73299999999999
1228
+ - type: mrr_at_3
1229
+ value: 76.167
1230
+ - type: mrr_at_5
1231
+ value: 76.932
1232
+ - type: ndcg_at_1
1233
+ value: 68.60000000000001
1234
+ - type: ndcg_at_10
1235
+ value: 81.339
1236
+ - type: ndcg_at_100
1237
+ value: 82.646
1238
+ - type: ndcg_at_1000
1239
+ value: 82.76599999999999
1240
+ - type: ndcg_at_20
1241
+ value: 82.107
1242
+ - type: ndcg_at_3
1243
+ value: 78.569
1244
+ - type: ndcg_at_5
1245
+ value: 79.937
1246
+ - type: precision_at_1
1247
+ value: 68.60000000000001
1248
+ - type: precision_at_10
1249
+ value: 9.31
1250
+ - type: precision_at_100
1251
+ value: 0.989
1252
+ - type: precision_at_1000
1253
+ value: 0.1
1254
+ - type: precision_at_20
1255
+ value: 4.805000000000001
1256
+ - type: precision_at_3
1257
+ value: 28.499999999999996
1258
+ - type: precision_at_5
1259
+ value: 17.76
1260
+ - type: recall_at_1
1261
+ value: 68.60000000000001
1262
+ - type: recall_at_10
1263
+ value: 93.10000000000001
1264
+ - type: recall_at_100
1265
+ value: 98.9
1266
+ - type: recall_at_1000
1267
+ value: 99.8
1268
+ - type: recall_at_20
1269
+ value: 96.1
1270
+ - type: recall_at_3
1271
+ value: 85.5
1272
+ - type: recall_at_5
1273
+ value: 88.8
1274
+ - type: main_score
1275
+ value: 81.339
1276
+ task:
1277
+ type: Retrieval
1278
+ - dataset:
1279
+ config: default
1280
+ name: MTEB Waimai (default)
1281
+ revision: latest2023
1282
+ split: test
1283
+ type: C-MTEB/waimai-classification
1284
+ metrics:
1285
+ - type: accuracy
1286
+ value: 90.63000000000001
1287
+ - type: accuracy_stderr
1288
+ value: 0.49203658400570216
1289
+ - type: ap
1290
+ value: 77.93466200571231
1291
+ - type: ap_stderr
1292
+ value: 1.2006502477223735
1293
+ - type: f1
1294
+ value: 89.36361097500829
1295
+ - type: f1_stderr
1296
+ value: 0.43660966359249054
1297
+ - type: main_score
1298
+ value: 90.63000000000001
1299
+ task:
1300
+ type: Classification
1301
+ tags:
1302
+ - mteb
1303
+ ---
1304
+
1305
+ # Quark-Emb-8B
1306
+
1307
+ - Chinese Text Embedding Model developed by Alibaba Quark-LLM Team. Details will be published later.