munish0838 commited on
Commit
1dec82e
·
verified ·
1 Parent(s): 127273f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ base_model: nota-ai/st-vicuna-v1.3-5.5b-ppl
4
+ library_name: transformers
5
+ tags:
6
+ - llama
7
+ ---
8
+
9
+ # QuantFactory/st-vicuna-v1.3-5.5b-ppl-GGUF
10
+ This is quantized version of [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) created using llama.cpp
11
+
12
+ # Model Description
13
+ ## Shortened LLaMA Model Card
14
+
15
+ Shortened LLaMA is a depth-pruned version of LLaMA models & variants for efficient text generation.
16
+
17
+ - **Developed by:** [Nota AI](https://www.nota.ai/)
18
+ - **License:** Non-commercial license
19
+ - **Repository:** https://github.com/Nota-NetsPresso/shortened-llm
20
+ - **Paper:** https://arxiv.org/abs/2402.02834
21
+
22
+ ## Compression Method
23
+ After identifying unimportant Transformer blocks, we perform one-shot pruning and light LoRA-based retraining.
24
+ <details>
25
+ <summary>
26
+ Click to see a method figure.
27
+ </summary>
28
+
29
+ <img alt="method" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_method.png" width="100%">
30
+
31
+ </details>
32
+
33
+ ## Model Links
34
+ | Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
35
+ |:---:|:---:|:---:|:---:|
36
+ | LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) |
37
+ | LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) |
38
+ | Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) |
39
+ | Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) |
40
+ | Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) |
41
+ | Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |
42
+
43
+ ## Zero-shot Performance & Efficiency Results
44
+ - EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
45
+
46
+ <img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_zero-shot_scores.png" width="100%">
47
+
48
+ ## License
49
+ - All rights related to this repository and the compressed models are reserved by Nota Inc.
50
+ - The intended use is strictly limited to research and non-commercial projects.
51
+
52
+ ## Model Acknowledgments
53
+ - [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs!
54
+ - Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs!
55
+
56
+ ## Original Model Citation
57
+ ```bibtex
58
+ @article{kim2024shortened,
59
+ title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
60
+ author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
61
+ journal={arXiv preprint arXiv:2402.02834},
62
+ year={2024},
63
+ url={https://arxiv.org/abs/2402.02834}
64
+ }
65
+ ```
66
+ ```bibtex
67
+ @article{kim2024mefomo,
68
+ title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
69
+ author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
70
+ journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)},
71
+ year={2024},
72
+ url={https://openreview.net/forum?id=18VGxuOdpu}
73
+ }
74
+ ```