aashish1904 commited on
Commit
bc8eed4
·
verified ·
1 Parent(s): 78ad809

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +155 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ library_name: transformers
5
+ base_model: Qwen/Qwen2.5-14B
6
+ tags:
7
+ - axolotl
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: medius-erebus-magnum-14b
11
+ results: []
12
+
13
+ ---
14
+
15
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
16
+
17
+
18
+ # QuantFactory/medius-erebus-magnum-14b-GGUF
19
+ This is quantized version of [underwoods/medius-erebus-magnum-14b](https://huggingface.co/underwoods/medius-erebus-magnum-14b) created using llama.cpp
20
+
21
+ # Original Model Card
22
+
23
+
24
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
25
+ <details><summary>See axolotl config</summary>
26
+
27
+ axolotl version: `0.4.1`
28
+ ```yaml
29
+ base_model: /workspace/medius-erebus
30
+ model_type: AutoModelForCausalLM
31
+ tokenizer_type: AutoTokenizer
32
+
33
+ hub_model_id: magnum-erebus-14b-v1
34
+ hub_strategy: "all_checkpoints"
35
+ push_dataset_to_hub:
36
+ hf_use_auth_token: true
37
+
38
+ plugins:
39
+ - axolotl.integrations.liger.LigerPlugin
40
+ liger_rope: true
41
+ liger_rms_norm: true
42
+ liger_swiglu: true
43
+ liger_fused_linear_cross_entropy: true
44
+
45
+ load_in_8bit: false
46
+ load_in_4bit: false
47
+ strict: false
48
+
49
+ datasets:
50
+ - path: anthracite-core/c2_logs_32k_llama3_qwen2_v1.2
51
+ type: sharegpt
52
+ - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
53
+ type: sharegpt
54
+ - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
55
+ type: sharegpt
56
+ - path: anthracite-org/nopm_claude_writing_fixed
57
+ type: sharegpt
58
+ - path: anthracite-org/kalo_opus_misc_240827
59
+ type: sharegpt
60
+ - path: anthracite-org/kalo_misc_part2
61
+ type: sharegpt
62
+ chat_template: chatml
63
+ shuffle_merged_datasets: true
64
+ default_system_message: "You are an assistant that responds to the user."
65
+ dataset_prepared_path: /workspace/data/magnum-14b-data
66
+ val_set_size: 0.0
67
+ output_dir: /workspace/data/magnum-erebus-14b-fft
68
+
69
+ sequence_len: 32768
70
+ sample_packing: true
71
+ pad_to_sequence_len: true
72
+
73
+ adapter:
74
+ lora_model_dir:
75
+ lora_r:
76
+ lora_alpha:
77
+ lora_dropout:
78
+ lora_target_linear:
79
+ lora_fan_in_fan_out:
80
+
81
+ wandb_project: 14b-magnum-fft
82
+ wandb_entity:
83
+ wandb_watch:
84
+ wandb_name: v4-r2-erebus-attempt-1
85
+ wandb_log_model:
86
+
87
+ gradient_accumulation_steps: 1
88
+ micro_batch_size: 2
89
+ num_epochs: 2
90
+ optimizer: adamw_bnb_8bit
91
+ lr_scheduler: cosine
92
+ learning_rate: 0.000008
93
+
94
+ train_on_inputs: false
95
+ group_by_length: false
96
+ bf16: auto
97
+ fp16:
98
+ tf32: false
99
+
100
+ gradient_checkpointing: unsloth
101
+ early_stopping_patience:
102
+ resume_from_checkpoint:
103
+ local_rank:
104
+ logging_steps: 1
105
+ xformers_attention:
106
+ flash_attention: true
107
+
108
+ warmup_steps: 40
109
+ evals_per_epoch:
110
+ eval_table_size:
111
+ eval_max_new_tokens:
112
+ saves_per_epoch: 2
113
+ debug:
114
+ deepspeed: deepspeed_configs/zero3_bf16.json
115
+ weight_decay: 0.1
116
+ fsdp:
117
+ fsdp_config:
118
+ special_tokens:
119
+
120
+
121
+ ```
122
+
123
+ </details><br>
124
+
125
+ # medius-erebus-magnum
126
+
127
+ ## Training procedure
128
+
129
+ ### Training hyperparameters
130
+
131
+ The following hyperparameters were used during training:
132
+ - learning_rate: 8e-06
133
+ - train_batch_size: 2
134
+ - eval_batch_size: 2
135
+ - seed: 42
136
+ - distributed_type: multi-GPU
137
+ - num_devices: 8
138
+ - total_train_batch_size: 16
139
+ - total_eval_batch_size: 16
140
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
141
+ - lr_scheduler_type: cosine
142
+ - lr_scheduler_warmup_steps: 40
143
+ - num_epochs: 2
144
+
145
+ ### Training results
146
+
147
+
148
+
149
+ ### Framework versions
150
+
151
+ - Transformers 4.45.1
152
+ - Pytorch 2.3.1+cu121
153
+ - Datasets 2.21.0
154
+ - Tokenizers 0.20.0
155
+