aashish1904 commited on
Commit
9f603c4
·
verified ·
1 Parent(s): 5a06031

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ pipeline_tag: text-generation
5
+ base_model: gemma-2-Ifable-9B
6
+ library_name: transformers
7
+
8
+ ---
9
+
10
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
11
+
12
+
13
+ # QuantFactory/gemma-2-Ifable-9B-GGUF
14
+ This is quantized version of [ifable/gemma-2-Ifable-9B](https://huggingface.co/ifable/gemma-2-Ifable-9B) created using llama.cpp
15
+
16
+ # Original Model Card
17
+
18
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
19
+ should probably proofread and complete it, then remove this comment. -->
20
+
21
+ # ifable/gemma-2-Ifable-9B
22
+
23
+ ## Training and evaluation data
24
+
25
+ - Gutenberg: https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1
26
+ - Carefully curated proprietary creative writing dataset
27
+
28
+ ## Training procedure
29
+
30
+ Training method: SimPO (GitHub - princeton-nlp/SimPO: SimPO: Simple Preference Optimization with a Reference-Free Reward)
31
+
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 1.0163
34
+ - Rewards/chosen: -21.6822
35
+ - Rewards/rejected: -47.8754
36
+ - Rewards/accuracies: 0.9167
37
+ - Rewards/margins: 26.1931
38
+ - Logps/rejected: -4.7875
39
+ - Logps/chosen: -2.1682
40
+ - Logits/rejected: -17.0475
41
+ - Logits/chosen: -12.0041
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 8e-07
47
+ - train_batch_size: 1
48
+ - eval_batch_size: 1
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - num_devices: 8
52
+ - gradient_accumulation_steps: 16
53
+ - total_train_batch_size: 128
54
+ - total_eval_batch_size: 8
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: cosine
57
+ - lr_scheduler_warmup_ratio: 0.1
58
+ - num_epochs: 1.0
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss |
63
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|
64
+ | 1.4444 | 0.9807 | 35 | 1.0163 | -21.6822 | -47.8754 | 0.9167 | 26.1931 | -4.7875 | -2.1682 | -17.0475 | -12.0041 | 0.0184 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.43.4
70
+ - Pytorch 2.3.0a0+ebedce2
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1
73
+
74
+
75
+ We are looking for product manager and operations managers to build applications through our model, and also open for business cooperation, and also AI engineer to join us, contact with : [email protected]