Text Generation
GGUF
alignment-handbook
Generated from Trainer
Inference Endpoints
conversational
aashish1904 commited on
Commit
2fffda3
·
verified ·
1 Parent(s): c2177aa

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +162 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ base_model: google/gemma-2-9b-it
5
+ tags:
6
+ - alignment-handbook
7
+ - generated_from_trainer
8
+ datasets:
9
+ - princeton-nlp/gemma2-ultrafeedback-armorm
10
+ model-index:
11
+ - name: princeton-nlp/gemma-2-9b-it-DPO
12
+ results: []
13
+
14
+ ---
15
+
16
+ ![](https://lh7-us.googleusercontent.com/docsz/AD_4nXfrlKyH6elkxeyrKw4el9j8V3IOQLsqTVngg19Akt6se1Eq2xaocCEjOmc1w8mq5ENHeYfpzRWjYB8D4mtmMPsiH7QyX_Ii1kEM7bk8eMzO68y9JEuDcoJxJBgbNDzRbTdVXylN9_zjrEposDwsoN7csKiD?key=xt3VSDoCbmTY7o-cwwOFwQ)
17
+
18
+ # QuantFactory/gemma-2-9b-it-DPO-GGUF
19
+ This is quantized version of [princeton-nlp/gemma-2-9b-it-DPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-DPO) created using llama.cpp
20
+
21
+ # Original Model Card
22
+
23
+
24
+ # gemma-2-9b-it-DPO Model Card
25
+
26
+ This model was trained under the same setup as [gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO), with the DPO objective.
27
+
28
+ SimPO (Simple Preference Optimization) is an offline preference optimization algorithm designed to enhance the training of large language models (LLMs) with preference optimization datasets. SimPO aligns the reward function with the generation likelihood, eliminating the need for a reference model and incorporating a target reward margin to boost performance. Please refer to our [preprint](https://arxiv.org/pdf/2405.14734) and [github repo](https://github.com/princeton-nlp/SimPO) for more details.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+
34
+ We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) with the DPO objective.
35
+
36
+ - **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
37
+ - **Model type:** Causal Language Model
38
+ - **License:** gemma
39
+ - **Finetuned from model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
40
+
41
+ ### Model Sources
42
+
43
+ <!-- Provide the basic links for the model. -->
44
+
45
+ - **Repository:** https://github.com/princeton-nlp/SimPO
46
+ - **Paper:** https://arxiv.org/pdf/2405.14734
47
+
48
+
49
+ ## How to Get Started with the Model
50
+ ```
51
+ import torch
52
+ from transformers import pipeline
53
+
54
+ model_id = "princeton-nlp/gemma-2-9b-it-DPO"
55
+
56
+ generator = pipeline(
57
+ "text-generation",
58
+ model=model_id,
59
+ model_kwargs={"torch_dtype": torch.bfloat16},
60
+ device="cuda",
61
+ )
62
+ outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
63
+ print(outputs[0]['generated_text'])
64
+ ```
65
+
66
+ ## Training Details
67
+
68
+ ### Training Data
69
+
70
+ We use [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) as the preference optimization dataset.
71
+
72
+ #### Training Hyperparameters
73
+
74
+ We used the following hyperparameters:
75
+ - learning rate: 5e-7
76
+ - batch size: 128
77
+ - beta: 0.01
78
+
79
+ The other hyperparameters are kept the same with our [SimPO recipe](https://github.com/princeton-nlp/SimPO/blob/main/training_configs/gemma-2-9b-it-simpo.yaml).
80
+
81
+ #### Speeds, Sizes, Times
82
+
83
+ Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) takes around 150 mins to finish on 8xH100 GPUs.
84
+
85
+ ## Evaluation Results
86
+
87
+
88
+ | models | AE2 LC | AE2 WR | AE2 Length | AH | AH Length | GSM | GSM Length | MMLU | MMLU Length |
89
+ |-----------------------------------|:------:|:------:|:----------:|:----:|:---------:|:----:|:----------:|:----:|:-----------:|
90
+ | [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) | 51.1 | 38.1 | 1571 | 40.8 | 545 | 87.4 | 395 | 72.7 | 515 |
91
+ | [princeton-nlp/gemma-2-9b-it-DPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-DPO) | 67.8 | 65.4 | 2016 | 58.9 | 717 | 88.5 | 392 | 72.2 | 624 |
92
+ | [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) | 72.4 | 65.9 | 1833 | 59.1 | 693 | 88.0 | 341 | 72.2 | 441 |
93
+
94
+
95
+ ## Technical Specifications
96
+
97
+ ### Model Architecture and Objective
98
+
99
+ The model architecture is based on [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). We use the DPO training objective.
100
+
101
+ #### Hardware
102
+
103
+ We used 8xH100 GPUs for model training.
104
+
105
+ #### Software
106
+
107
+ Training was done using the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library.
108
+
109
+ ## Citation
110
+
111
+ gemma model:
112
+ ```
113
+ @article{gemma_2024,
114
+ title={Gemma},
115
+ url={https://www.kaggle.com/m/3301},
116
+ DOI={10.34740/KAGGLE/M/3301},
117
+ publisher={Kaggle},
118
+ author={Gemma Team},
119
+ year={2024}
120
+ }
121
+ ```
122
+
123
+ DPO paper:
124
+ ```
125
+ @article{rafailov2024direct,
126
+ title={Direct Preference Optimization: Your language model is secretly a reward model},
127
+ author={Rafailov, Rafael and Sharma, Archit and Mitchell, Eric and Manning, Christopher D and Ermon, Stefano and Finn, Chelsea},
128
+ journal={Advances in Neural Information Processing Systems},
129
+ volume={36},
130
+ year={2024}
131
+ }
132
+ ```
133
+
134
+ SimPO paper:
135
+ ```
136
+ @article{meng2024simpo,
137
+ title={{SimPO}: Simple preference optimization with a reference-free reward},
138
+ author={Meng, Yu and Xia, Mengzhou and Chen, Danqi},
139
+ journal={arXiv preprint arXiv:2405.14734},
140
+ year={2024}
141
+ }
142
+ ```
143
+
144
+ UltraFeedback paper:
145
+ ```
146
+ @article{cui2023ultrafeedback,
147
+ title={{UltraFeedback}: Boosting language models with high-quality feedback},
148
+ author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong},
149
+ journal={arXiv preprint arXiv:2310.01377},
150
+ year={2023}
151
+ }
152
+ ```
153
+
154
+ ArmoRM paper:
155
+ ```
156
+ @article{wang2024interpretable,
157
+ title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts},
158
+ author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong},
159
+ journal={arXiv preprint arXiv:2406.12845},
160
+ year={2024}
161
+ }
162
+ ```