Text Generation
GGUF
Eval Results
Inference Endpoints
File size: 25,052 Bytes
9a1e8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

---

datasets:
- bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language: 
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
  example_title: "zh-en sentiment"
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
  example_title: "zh-zh sentiment"
- text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
  example_title: "vi-en query"
- text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
  example_title: "fr-fr query"
- text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
  example_title: "te-en qa"
- text: "Why is the sky blue?"
  example_title: "en-en qa"
- text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
  example_title: "es-en fable"
- text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
  example_title: "hi-en fable"
model-index:
- name: bloomz-7b1
  results:
  - task:
      type: Coreference resolution
    dataset:
      type: winogrande
      name: Winogrande XL (xl)
      config: xl
      split: validation
      revision: a80f460359d1e9a67c006011c94de42a8759430c
    metrics:
    - type: Accuracy
      value: 55.8
  - task:
      type: Coreference resolution
    dataset:
      type: Muennighoff/xwinograd
      name: XWinograd (en)
      config: en
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 66.02
  - task:
      type: Coreference resolution
    dataset:
      type: Muennighoff/xwinograd
      name: XWinograd (fr)
      config: fr
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 57.83
  - task:
      type: Coreference resolution
    dataset:
      type: Muennighoff/xwinograd
      name: XWinograd (jp)
      config: jp
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 52.87
  - task:
      type: Coreference resolution
    dataset:
      type: Muennighoff/xwinograd
      name: XWinograd (pt)
      config: pt
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 57.79
  - task:
      type: Coreference resolution
    dataset:
      type: Muennighoff/xwinograd
      name: XWinograd (ru)
      config: ru
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 54.92
  - task:
      type: Coreference resolution
    dataset:
      type: Muennighoff/xwinograd
      name: XWinograd (zh)
      config: zh
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 63.69
  - task:
      type: Natural language inference
    dataset:
      type: anli
      name: ANLI (r1)
      config: r1
      split: validation
      revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
    metrics:
    - type: Accuracy
      value: 42.1
  - task:
      type: Natural language inference
    dataset:
      type: anli
      name: ANLI (r2)
      config: r2
      split: validation
      revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
    metrics:
    - type: Accuracy
      value: 39.5
  - task:
      type: Natural language inference
    dataset:
      type: anli
      name: ANLI (r3)
      config: r3
      split: validation
      revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
    metrics:
    - type: Accuracy
      value: 41.0
  - task:
      type: Natural language inference
    dataset:
      type: super_glue
      name: SuperGLUE (cb)
      config: cb
      split: validation
      revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
    metrics:
    - type: Accuracy
      value: 80.36
  - task:
      type: Natural language inference
    dataset:
      type: super_glue
      name: SuperGLUE (rte)
      config: rte
      split: validation
      revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
    metrics:
    - type: Accuracy
      value: 84.12
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (ar)
      config: ar
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 53.25
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (bg)
      config: bg
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 43.61
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (de)
      config: de
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 46.83
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (el)
      config: el
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 41.53
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (en)
      config: en
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 59.68
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (es)
      config: es
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 55.1
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (fr)
      config: fr
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 55.26
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (hi)
      config: hi
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 50.88
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (ru)
      config: ru
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 47.75
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (sw)
      config: sw
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 46.63
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (th)
      config: th
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 40.12
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (tr)
      config: tr
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 37.55
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (ur)
      config: ur
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 46.51
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (vi)
      config: vi
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 52.93
  - task:
      type: Natural language inference
    dataset:
      type: xnli
      name: XNLI (zh)
      config: zh
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 53.61
  - task:
      type: Program synthesis
    dataset:
      type: openai_humaneval
      name: HumanEval
      config: None
      split: test
      revision: e8dc562f5de170c54b5481011dd9f4fa04845771
    metrics:
    - type: Pass@1
      value: 8.06
    - type: Pass@10
      value: 15.03
    - type: Pass@100
      value: 27.49
  - task:
      type: Sentence completion
    dataset:
      type: story_cloze
      name: StoryCloze (2016)
      config: "2016"
      split: validation
      revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
    metrics:
    - type: Accuracy
      value: 90.43
  - task:
      type: Sentence completion
    dataset:
      type: super_glue
      name: SuperGLUE (copa)
      config: copa
      split: validation
      revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
    metrics:
    - type: Accuracy
      value: 86.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (et)
      config: et
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 50.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (ht)
      config: ht
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 54.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (id)
      config: id
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 76.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (it)
      config: it
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 61.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (qu)
      config: qu
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 60.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (sw)
      config: sw
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 63.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (ta)
      config: ta
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 64.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (th)
      config: th
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 57.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (tr)
      config: tr
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 53.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (vi)
      config: vi
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 79.0
  - task:
      type: Sentence completion
    dataset:
      type: xcopa
      name: XCOPA (zh)
      config: zh
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 81.0
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (ar)
      config: ar
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 83.26
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (es)
      config: es
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 88.95
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (eu)
      config: eu
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 73.33
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (hi)
      config: hi
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 80.61
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (id)
      config: id
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 84.25
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (my)
      config: my
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 52.55
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (ru)
      config: ru
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 65.32
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (sw)
      config: sw
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 71.67
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (te)
      config: te
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 74.72
  - task:
      type: Sentence completion
    dataset:
      type: Muennighoff/xstory_cloze
      name: XStoryCloze (zh)
      config: zh
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 85.37

---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/bloomz-7b1-GGUF
This is quantized version of [bigscience/bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) created using llama.cpp

# Original Model Card


![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)

#  Table of Contents

1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [Evaluation](#evaluation)
7. [Citation](#citation)

# Model Summary

> We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.

- **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
- **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786)
- **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
- **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
- **BLOOMZ & mT0 Model Family:**

<div class="max-w-full overflow-auto">
<table>
  <tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English.
</tr>
<tr>
<td>Parameters</td>
<td>300M</td>
<td>580M</td>
<td>1.2B</td>
<td>3.7B</td>
<td>13B</td>
<td>560M</td>
<td>1.1B</td>
<td>1.7B</td>
<td>3B</td>
<td>7.1B</td>
<td>176B</td>
</tr>
<tr>
<td>Finetuned Model</td>
<td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td>  
<td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td>
</tr>
</tr>
  <tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td>
</tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td>
</tr>
<th colspan="12">Original pretrained checkpoints. Not recommended.</th>
<tr>
<td>Pretrained Model</td>
<td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td>  
<td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td>
<td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td>
<td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td>
<td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td>
</tr>
</table>
</div>


# Use

## Intended use

We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: 
- 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
- Suggest at least five related search terms to "Mạng neural nhân tạo".
- Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
- Explain in a sentence in Telugu what is backpropagation in neural networks.

**Feel free to share your generations in the Community tab!**

## How to use

### CPU

<details>
<summary> Click to expand </summary>

```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigscience/bloomz-7b1"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)

inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

</details>

### GPU

<details>
<summary> Click to expand </summary>

```python
# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigscience/bloomz-7b1"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")

inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

</details>

### GPU in 8bit

<details>
<summary> Click to expand </summary>

```python
# pip install -q transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigscience/bloomz-7b1"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)

inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

</details>

<!-- Necessary for whitespace -->
###

# Limitations

**Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".

# Training

## Model

- **Architecture:** Same as [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1), also refer to the `config.json` file
- **Finetuning steps:** 1000
- **Finetuning tokens:** 4.19 billion
- **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 64x data parallel
- **Precision:** float16

## Hardware

- **CPUs:** AMD CPUs with 512GB memory per node
- **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links
- **Communication:** NCCL-communications network with a fully dedicated subnet

## Software

- **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed)
- **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)

# Evaluation

We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config.

# Citation
```bibtex
@article{muennighoff2022crosslingual,
  title={Crosslingual generalization through multitask finetuning},
  author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others},
  journal={arXiv preprint arXiv:2211.01786},
  year={2022}
}
```