munish0838
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sethuiyer/Medichat-Llama3-8B
|
3 |
+
library_name: transformers
|
4 |
+
tags:
|
5 |
+
- mergekit
|
6 |
+
- merge
|
7 |
+
- medical
|
8 |
+
license: other
|
9 |
+
datasets:
|
10 |
+
- mlabonne/orpo-dpo-mix-40k
|
11 |
+
- Open-Orca/SlimOrca-Dedup
|
12 |
+
- jondurbin/airoboros-3.2
|
13 |
+
- microsoft/orca-math-word-problems-200k
|
14 |
+
- m-a-p/Code-Feedback
|
15 |
+
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
|
16 |
+
- ruslanmv/ai-medical-chatbot
|
17 |
+
model-index:
|
18 |
+
- name: Medichat-Llama3-8B
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: text-generation
|
22 |
+
name: Text Generation
|
23 |
+
dataset:
|
24 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
25 |
+
type: ai2_arc
|
26 |
+
config: ARC-Challenge
|
27 |
+
split: test
|
28 |
+
args:
|
29 |
+
num_few_shot: 25
|
30 |
+
metrics:
|
31 |
+
- type: acc_norm
|
32 |
+
value: 59.13
|
33 |
+
name: normalized accuracy
|
34 |
+
source:
|
35 |
+
url: >-
|
36 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
|
37 |
+
name: Open LLM Leaderboard
|
38 |
+
- task:
|
39 |
+
type: text-generation
|
40 |
+
name: Text Generation
|
41 |
+
dataset:
|
42 |
+
name: HellaSwag (10-Shot)
|
43 |
+
type: hellaswag
|
44 |
+
split: validation
|
45 |
+
args:
|
46 |
+
num_few_shot: 10
|
47 |
+
metrics:
|
48 |
+
- type: acc_norm
|
49 |
+
value: 82.9
|
50 |
+
name: normalized accuracy
|
51 |
+
source:
|
52 |
+
url: >-
|
53 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
|
54 |
+
name: Open LLM Leaderboard
|
55 |
+
- task:
|
56 |
+
type: text-generation
|
57 |
+
name: Text Generation
|
58 |
+
dataset:
|
59 |
+
name: MMLU (5-Shot)
|
60 |
+
type: cais/mmlu
|
61 |
+
config: all
|
62 |
+
split: test
|
63 |
+
args:
|
64 |
+
num_few_shot: 5
|
65 |
+
metrics:
|
66 |
+
- type: acc
|
67 |
+
value: 60.35
|
68 |
+
name: accuracy
|
69 |
+
source:
|
70 |
+
url: >-
|
71 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
|
72 |
+
name: Open LLM Leaderboard
|
73 |
+
- task:
|
74 |
+
type: text-generation
|
75 |
+
name: Text Generation
|
76 |
+
dataset:
|
77 |
+
name: TruthfulQA (0-shot)
|
78 |
+
type: truthful_qa
|
79 |
+
config: multiple_choice
|
80 |
+
split: validation
|
81 |
+
args:
|
82 |
+
num_few_shot: 0
|
83 |
+
metrics:
|
84 |
+
- type: mc2
|
85 |
+
value: 49.65
|
86 |
+
source:
|
87 |
+
url: >-
|
88 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
|
89 |
+
name: Open LLM Leaderboard
|
90 |
+
- task:
|
91 |
+
type: text-generation
|
92 |
+
name: Text Generation
|
93 |
+
dataset:
|
94 |
+
name: Winogrande (5-shot)
|
95 |
+
type: winogrande
|
96 |
+
config: winogrande_xl
|
97 |
+
split: validation
|
98 |
+
args:
|
99 |
+
num_few_shot: 5
|
100 |
+
metrics:
|
101 |
+
- type: acc
|
102 |
+
value: 78.93
|
103 |
+
name: accuracy
|
104 |
+
source:
|
105 |
+
url: >-
|
106 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
|
107 |
+
name: Open LLM Leaderboard
|
108 |
+
- task:
|
109 |
+
type: text-generation
|
110 |
+
name: Text Generation
|
111 |
+
dataset:
|
112 |
+
name: GSM8k (5-shot)
|
113 |
+
type: gsm8k
|
114 |
+
config: main
|
115 |
+
split: test
|
116 |
+
args:
|
117 |
+
num_few_shot: 5
|
118 |
+
metrics:
|
119 |
+
- type: acc
|
120 |
+
value: 60.35
|
121 |
+
name: accuracy
|
122 |
+
source:
|
123 |
+
url: >-
|
124 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
|
125 |
+
name: Open LLM Leaderboard
|
126 |
+
language:
|
127 |
+
- en
|
128 |
+
pipeline_tag: text-generation
|
129 |
+
---
|
130 |
+
|
131 |
+
# Medichat-Llama3-8B-GGUF
|
132 |
+
This is quantized version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) created using llama.cpp
|
133 |
+
|
134 |
+
# Model Description
|
135 |
+
|
136 |
+
Built upon the powerful LLaMa-3 architecture and fine-tuned on an extensive dataset of health information, this model leverages its vast medical knowledge to offer clear, comprehensive answers.
|
137 |
+
|
138 |
+
This model is generally better for accurate and informative responses, particularly for users seeking in-depth medical advice.
|
139 |
+
|
140 |
+
|
141 |
+
The following YAML configuration was used to produce this model:
|
142 |
+
|
143 |
+
```yaml
|
144 |
+
|
145 |
+
models:
|
146 |
+
- model: Undi95/Llama-3-Unholy-8B
|
147 |
+
parameters:
|
148 |
+
weight: [0.25, 0.35, 0.45, 0.35, 0.25]
|
149 |
+
density: [0.1, 0.25, 0.5, 0.25, 0.1]
|
150 |
+
- model: Locutusque/llama-3-neural-chat-v1-8b
|
151 |
+
- model: ruslanmv/Medical-Llama3-8B-16bit
|
152 |
+
parameters:
|
153 |
+
weight: [0.55, 0.45, 0.35, 0.45, 0.55]
|
154 |
+
density: [0.1, 0.25, 0.5, 0.25, 0.1]
|
155 |
+
merge_method: dare_ties
|
156 |
+
base_model: Locutusque/llama-3-neural-chat-v1-8b
|
157 |
+
parameters:
|
158 |
+
int8_mask: true
|
159 |
+
dtype: bfloat16
|
160 |
+
|
161 |
+
```
|
162 |
+
|
163 |
+
# Comparision Against Dr.Samantha 7B
|
164 |
+
|
165 |
+
| Subject | Medichat-Llama3-8B Accuracy (%) | Dr. Samantha Accuracy (%) |
|
166 |
+
|-------------------------|---------------------------------|---------------------------|
|
167 |
+
| Clinical Knowledge | 71.70 | 52.83 |
|
168 |
+
| Medical Genetics | 78.00 | 49.00 |
|
169 |
+
| Human Aging | 70.40 | 58.29 |
|
170 |
+
| Human Sexuality | 73.28 | 55.73 |
|
171 |
+
| College Medicine | 62.43 | 38.73 |
|
172 |
+
| Anatomy | 64.44 | 41.48 |
|
173 |
+
| College Biology | 72.22 | 52.08 |
|
174 |
+
| High School Biology | 77.10 | 53.23 |
|
175 |
+
| Professional Medicine | 63.97 | 38.73 |
|
176 |
+
| Nutrition | 73.86 | 50.33 |
|
177 |
+
| Professional Psychology | 68.95 | 46.57 |
|
178 |
+
| Virology | 54.22 | 41.57 |
|
179 |
+
| High School Psychology | 83.67 | 66.60 |
|
180 |
+
| **Average** | **70.33** | **48.85** |
|
181 |
+
|
182 |
+
|
183 |
+
The current model demonstrates a substantial improvement over the previous [Dr. Samantha](sethuiyer/Dr_Samantha-7b) model in terms of subject-specific knowledge and accuracy.
|
184 |
+
|
185 |
+
### Usage:
|
186 |
+
```python
|
187 |
+
import torch
|
188 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
189 |
+
|
190 |
+
class MedicalAssistant:
|
191 |
+
def __init__(self, model_name="sethuiyer/Medichat-Llama3-8B", device="cuda"):
|
192 |
+
self.device = device
|
193 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
194 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)
|
195 |
+
self.sys_message = '''
|
196 |
+
You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
|
197 |
+
provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
|
198 |
+
'''
|
199 |
+
|
200 |
+
def format_prompt(self, question):
|
201 |
+
messages = [
|
202 |
+
{"role": "system", "content": self.sys_message},
|
203 |
+
{"role": "user", "content": question}
|
204 |
+
]
|
205 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
206 |
+
return prompt
|
207 |
+
|
208 |
+
def generate_response(self, question, max_new_tokens=512):
|
209 |
+
prompt = self.format_prompt(question)
|
210 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
211 |
+
with torch.no_grad():
|
212 |
+
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens, use_cache=True)
|
213 |
+
answer = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
214 |
+
return answer
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
assistant = MedicalAssistant()
|
218 |
+
question = '''
|
219 |
+
Symptoms:
|
220 |
+
Dizziness, headache, and nausea.
|
221 |
+
|
222 |
+
What is the differential diagnosis?
|
223 |
+
'''
|
224 |
+
response = assistant.generate_response(question)
|
225 |
+
print(response)
|
226 |
+
|
227 |
+
```
|
228 |
+
|
229 |
+
## Ollama
|
230 |
+
This model is now also available on Ollama. You can use it by running the command ```ollama run monotykamary/medichat-llama3``` in your
|
231 |
+
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on
|
232 |
+
a Google Colab backend.
|