aashish1904 commited on
Commit
644a6ea
·
verified ·
1 Parent(s): 91d8f3c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: llama3.1
5
+ language:
6
+ - de
7
+ - en
8
+ - it
9
+ - fr
10
+ - pt
11
+ - es
12
+ tags:
13
+ - spectrum
14
+
15
+ ---
16
+
17
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
18
+
19
+ # QuantFactory/Llama-3.1-SauerkrautLM-8b-Instruct-GGUF
20
+ This is quantized version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) created using llama.cpp
21
+
22
+ # Original Model Card
23
+
24
+
25
+ ![Llama-3.1-SauerkrautLM-8b-Instruct]( https://vago-solutions.ai/wp-content/uploads/2024/07/Llama3.1-SauerkrautLM.png "Llama-3.1-SauerkrautLM-8b-Instruct")
26
+ ## VAGO solutions Llama-3.1-SauerkrautLM-8b-Instruct
27
+
28
+ **Fine-tuned Model** - *to showcase the potential of resource-efficient Fine-Tuning of Large Language Models using **Spectrum Fine-Tuning***
29
+
30
+ Introducing **Llama-3.1-SauerkrautLM-8b-Instruct** – our Sauerkraut version of the powerful [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)!
31
+
32
+ - Fine-tuning on German-English data with [**Spectrum**](https://github.com/cognitivecomputations/spectrum) Fine-Tuning **targeting 25% of the layers.**
33
+ - Utilized unique German-English Sauerkraut Mix v2
34
+ - Implemented bespoke, precision-engineered fine-tuning approach
35
+
36
+ # Table of Contents
37
+ 1. [Overview of all Llama-3.1-SauerkrautLM-8b-Instruct](#all-Llama-3.1-SauerkrautLM-8b-Instruct)
38
+ 2. [Model Details](#model-details)
39
+ - [Training procedure](#training-procedure)
40
+ 3. [Evaluation](#evaluation)
41
+ 5. [Disclaimer](#disclaimer)
42
+ 6. [Contact](#contact)
43
+ 7. [Collaborations](#collaborations)
44
+ 8. [Acknowledgement](#acknowledgement)
45
+
46
+ ## All Llama-3.1-SauerkrautLM-8b-Instruct
47
+
48
+ | Model | HF | EXL2 | GGUF | AWQ |
49
+ |-------|-------|-------|-------|-------|
50
+ | Llama-3.1-SauerkrautLM-8b-Instruct | [Link](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) | coming soon | coming soon | coming soon |
51
+
52
+ ## Model Details
53
+ **Llama-3.1-SauerkrautLM-8b-Instruct**
54
+ - **Model Type:** Llama-3.1-SauerkrautLM-8b-Instruct is a fine-tuned Model based on [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/mistralai/meta-llama/Meta-Llama-3.1-8B-Instruct)
55
+ - **Language(s):** German, English
56
+ - **License:** llama3.1
57
+ - **Contact:** [VAGO solutions](https://vago-solutions.ai)
58
+
59
+ ## Training Procedure
60
+
61
+ This model showcases the potential of resource-efficient fine-tuning of large language models using Spectrum Fine-Tuning. Here's a brief on the procedure:
62
+
63
+ **Fine-tuning on German-English Data**:
64
+
65
+ - Utilized Spectrum Fine-Tuning, targeting 25% of the model's layers
66
+ - Introduced the model to a unique German-English Sauerkraut Mix v2
67
+ - Implemented a bespoke, precision-engineered fine-tuning approach
68
+
69
+ **Sauerkraut Mix v2**:
70
+
71
+ - Premium Dataset for Language Models, focusing on German and English
72
+ - Meticulously selected, high-quality dataset combinations
73
+ - Cutting-edge synthetic datasets created using proprietary, high-precision generation techniques
74
+
75
+ ## Objective and Results
76
+
77
+ The primary goal of this training was to demonstrate that with Spectrum Fine-Tuning targeting 25% of the layers, a 8 billion parameter model can significantly enhance the capabilities while using a fraction of the resources of the classic fine-tuning approach.
78
+
79
+ The model has substantially improved skills in German and English, as demonstrated by impressive benchmarks on the new Hugging Face leaderboard.
80
+
81
+ **Spectrum Fine-Tuning can efficiently enhance a large language model's capabilities in multiple languages while preserving the majority of its previously acquired knowledge.**
82
+
83
+ ## Evaluation
84
+
85
+ **AGIEVAL**
86
+ ![Llama-3.1-SauerkrautLM-8b-Instruct-AGIEVAL]( https://vago-solutions.ai/wp-content/uploads/2024/07/llama3.1-agieval1.png "Llama-3.1-SauerkrautLM-8b-Instruct-AGIEVAL")
87
+
88
+ **GPT4ALL**
89
+ ![Llama-3.1-SauerkrautLM-8b-Instruct-GPT4ALL]( https://vago-solutions.ai/wp-content/uploads/2024/07/llama3.1-GPT4ALL1.png "Llama-3.1-SauerkrautLM-8b-Instruct-GPT4ALL")
90
+
91
+ **TRUTHFULQA**
92
+ ![Llama-3.1-SauerkrautLM-8b-Instruct-TRUTHFULQA]( https://vago-solutions.ai/wp-content/uploads/2024/07/llama3.1-TQA1.png "Llama-3.1-SauerkrautLM-8b-Instruct-TRUTHFULQA")
93
+
94
+ **OPENLEADERBOARD 2**
95
+ ![Llama-3.1-SauerkrautLM-8b-Instruct-OPENLEADERBOARD]( https://vago-solutions.ai/wp-content/uploads/2024/07/llama3.1-HF21.png "Llama-3.1-SauerkrautLM-8b-Instruct-OPENLEADERBOARD")
96
+
97
+
98
+ ## Disclaimer
99
+ We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
100
+
101
+ ## Contact
102
+ If you are interested in customized LLMs for business applications, please get in contact with us via our website. We are also grateful for your feedback and suggestions.
103
+
104
+ ## Collaborations
105
+ We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
106
+
107
+ ## Acknowledgement
108
+ Many thanks to [meta-llama](https://huggingface.co/meta-llama) for providing such a valuable model to the Open-Source community.