aashish1904 commited on
Commit
d2b3638
·
verified ·
1 Parent(s): cec3c3e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +323 -0
README.md ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ language:
5
+ - en
6
+ license: llama3
7
+ tags:
8
+ - Llama-3
9
+ - instruct
10
+ - finetune
11
+ - chatml
12
+ - gpt4
13
+ - synthetic data
14
+ - distillation
15
+ - function calling
16
+ - json mode
17
+ - axolotl
18
+ - roleplaying
19
+ - chat
20
+ base_model: meta-llama/Meta-Llama-3.2-3B
21
+ widget:
22
+ - example_title: Hermes 3
23
+ messages:
24
+ - role: system
25
+ content: >-
26
+ You are a sentient, superintelligent artificial general intelligence, here
27
+ to teach and assist me.
28
+ - role: user
29
+ content: >-
30
+ Write a short story about Goku discovering kirby has teamed up with Majin
31
+ Buu to destroy the world.
32
+ model-index:
33
+ - name: Hermes-3-Llama-3.2-3B
34
+ results: []
35
+ library_name: transformers
36
+
37
+ ---
38
+
39
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
40
+
41
+
42
+ # QuantFactory/Hermes-3-Llama-3.2-3B-GGUF
43
+ This is quantized version of [NousResearch/Hermes-3-Llama-3.2-3B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B) created using llama.cpp
44
+
45
+ # Original Model Card
46
+
47
+
48
+ # Hermes 3 - Llama-3.2 3B
49
+
50
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-kj_KflXsdpcZoTQsvx7W.jpeg)
51
+
52
+
53
+ ## Model Description
54
+
55
+ Hermes 3 3B is a small but mighty new addition to the Hermes series of LLMs by Nous Research, and is Nous's first fine-tune in this parameter class.
56
+
57
+ For details on Hermes 3, please see the [**Hermes 3 Technical Report**](https://arxiv.org/abs/2408.11857).
58
+
59
+ Hermes 3 is a generalist language model with many improvements over Hermes 2, including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board.
60
+
61
+ Hermes 3 3B is a full parameter fine-tune of the Llama-3.2 3B foundation model, focused on aligning LLMs to the user, with powerful steering capabilities and control given to the end user.
62
+
63
+ The Hermes 3 series builds and expands on the Hermes 2 set of capabilities, including more powerful and reliable function calling and structured output capabilities, generalist assistant capabilities, and improved code generation skills.
64
+
65
+ Hermes 3 3B was trained on H100s on **LambdaLabs GPU Cloud**. [Check out LambdaLabs' cloud offerings here](https://lambdalabs.com/service/gpu-cloud).
66
+
67
+ # Benchmarks
68
+
69
+ Hermes 3 is competitive, if not superior, to Llama-3.1 Instruct models at general capabilities, with varying strengths and weaknesses attributable between the two.
70
+
71
+
72
+ ## GPT4All:
73
+ ```
74
+ |    Task     |Version| Metric |Value |   |Stderr|
75
+ |-------------|------:|--------|-----:|---|-----:|
76
+ |arc_challenge|      0|acc     |0.5529|±  |0.0145|
77
+ |             |       |acc_norm|0.5870|±  |0.0144|
78
+ |arc_easy     |      0|acc     |0.8371|±  |0.0076|
79
+ |             |       |acc_norm|0.8144|±  |0.0080|
80
+ |boolq        |      1|acc     |0.8599|±  |0.0061|
81
+ |hellaswag    |      0|acc     |0.6133|±  |0.0049|
82
+ |             |       |acc_norm|0.7989|±  |0.0040|
83
+ |openbookqa   |      0|acc     |0.3940|±  |0.0219|
84
+ |             |       |acc_norm|0.4680|±  |0.0223|
85
+ |piqa         |      0|acc     |0.8063|±  |0.0092|
86
+ |             |       |acc_norm|0.8156|±  |0.0090|
87
+ |winogrande   |      0|acc     |0.7372|±  |0.0124|
88
+ ```
89
+
90
+ Average: 72.59
91
+
92
+ ## AGIEval:
93
+ ```
94
+ |             Task             |Version| Metric |Value |   |Stderr|
95
+ |------------------------------|------:|--------|-----:|---|-----:|
96
+ |agieval_aqua_rat              |      0|acc     |0.2441|±  |0.0270|
97
+ |                              |       |acc_norm|0.2441|±  |0.0270|
98
+ |agieval_logiqa_en             |      0|acc     |0.3687|±  |0.0189|
99
+ |                              |       |acc_norm|0.3840|±  |0.0191|
100
+ |agieval_lsat_ar               |      0|acc     |0.2304|±  |0.0278|
101
+ |                              |       |acc_norm|0.2174|±  |0.0273|
102
+ |agieval_lsat_lr               |      0|acc     |0.5471|±  |0.0221|
103
+ |                              |       |acc_norm|0.5373|±  |0.0221|
104
+ |agieval_lsat_rc               |      0|acc     |0.6617|±  |0.0289|
105
+ |                              |       |acc_norm|0.6357|±  |0.0294|
106
+ |agieval_sat_en                |      0|acc     |0.7670|±  |0.0295|
107
+ |                              |       |acc_norm|0.7379|±  |0.0307|
108
+ |agieval_sat_en_without_passage|      0|acc     |0.4417|±  |0.0347|
109
+ |                              |       |acc_norm|0.4223|±  |0.0345|
110
+ |agieval_sat_math              |      0|acc     |0.4000|±  |0.0331|
111
+ |                              |       |acc_norm|0.3455|±  |0.0321|
112
+ ```
113
+
114
+ Average: 44.05
115
+
116
+ ## BigBench:
117
+
118
+ ```
119
+
120
+ |                      Task                      |Version|       Metric        |Value |   |Stderr|
121
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
122
+ |bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6000|±  |0.0356|
123
+ |bigbench_date_understanding                     |      0|multiple_choice_grade|0.6585|±  |0.0247|
124
+ |bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3178|±  |0.0290|
125
+ |bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2340|±  |0.0224|
126
+ |                                                |       |exact_str_match      |0.0000|±  |0.0000|
127
+ |bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2980|±  |0.0205|
128
+ |bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2057|±  |0.0153|
129
+ |bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5367|±  |0.0288|
130
+ |bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4040|±  |0.0220|
131
+ |bigbench_navigate                               |      0|multiple_choice_grade|0.4970|±  |0.0158|
132
+ |bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.7075|±  |0.0102|
133
+ |bigbench_ruin_names                             |      0|multiple_choice_grade|0.4821|±  |0.0236|
134
+ |bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2295|±  |0.0133|
135
+ |bigbench_snarks                                 |      0|multiple_choice_grade|0.6906|±  |0.0345|
136
+ |bigbench_sports_understanding                   |      0|multiple_choice_grade|0.5375|±  |0.0159|
137
+ |bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.6270|±  |0.0153|
138
+ |bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2216|±  |0.0118|
139
+ |bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1594|±  |0.0088|
140
+ |bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5367|±  |0.0288|
141
+ ```
142
+
143
+ Average: 44.13
144
+
145
+
146
+ # Prompt Format
147
+
148
+ Hermes 3 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
149
+
150
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
151
+
152
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
153
+
154
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
155
+
156
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
157
+ ```
158
+ <|im_start|>system
159
+ You are Hermes 3, a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
160
+ <|im_start|>user
161
+ Hello, who are you?<|im_end|>
162
+ <|im_start|>assistant
163
+ Hi there! My name is Hermes 3, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
164
+ ```
165
+
166
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
167
+ `tokenizer.apply_chat_template()` method:
168
+
169
+ ```python
170
+ messages = [
171
+ {"role": "system", "content": "You are Hermes 3."},
172
+ {"role": "user", "content": "Hello, who are you?"}
173
+ ]
174
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
175
+ model.generate(**gen_input)
176
+ ```
177
+
178
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
179
+ that the model continues with an assistant response.
180
+
181
+ To utilize the prompt format without a system prompt, simply leave the line out.
182
+
183
+
184
+ ## Prompt Format for Function Calling
185
+
186
+ # Note: This version uses USER as both the user prompt and the tool response role. This is due to a bug we experienced when training. It will require modification to the function calling code!
187
+
188
+ Our model was trained on specific system prompts and structures for Function Calling.
189
+
190
+ You should use the system role with this message, followed by a function signature json as this example shows here.
191
+ ```
192
+ <|im_start|>system
193
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
194
+ <tool_call>
195
+ {"arguments": <args-dict>, "name": <function-name>}
196
+ </tool_call><|im_end|>
197
+ ```
198
+
199
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
200
+ ```
201
+ <|im_start|>user
202
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
203
+ ```
204
+
205
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
206
+ ```
207
+ <|im_start|>assistant
208
+ <tool_call>
209
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
210
+ </tool_call><|im_end|>
211
+ ```
212
+
213
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
214
+ ```
215
+ <|im_start|>user
216
+ <tool_response>
217
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
218
+ </tool_response>
219
+ <|im_end|>
220
+ ```
221
+
222
+ The assistant will then read in that data from the function's response, and generate a natural language response:
223
+ ```
224
+ <|im_start|>assistant
225
+ The stock fundamentals data for Tesla (TSLA) are as follows:
226
+ - **Symbol**: TSLA
227
+ - **Company Name**: Tesla, Inc.
228
+ - **Sector**: Consumer Cyclical
229
+ - **Industry**: Auto Manufacturers
230
+ - **Market Capitalization**: $566,160,130,480
231
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
232
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
233
+ - **Dividend Yield**: N/A
234
+ - **Trailing Earnings Per Share (EPS)**: $4.3
235
+ - **Beta Value of the Stock**: 2.42
236
+ - **52-Week High Price of the Stock**: $299.29
237
+ - **52-Week Low Price of the Stock**: $152.37
238
+
239
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
240
+ ```
241
+
242
+
243
+ ## Prompt Format for JSON Mode / Structured Outputs
244
+
245
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
246
+
247
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
248
+
249
+ ```
250
+ <|im_start|>system
251
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
252
+ ```
253
+
254
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
255
+
256
+
257
+ # Inference
258
+
259
+ Here's an example of how to run inference with Hermes-3 3B using the HuggingFace Transformers library.
260
+
261
+ ```python
262
+ import torch
263
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
264
+ import bitsandbytes, flash_attn
265
+
266
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-3-Llama-3.2-3B', trust_remote_code=True)
267
+ model = LlamaForCausalLM.from_pretrained(
268
+ "NousResearch/Hermes-3-Llama-3.2-3B",
269
+ torch_dtype=torch.float16,
270
+ device_map="auto",
271
+ load_in_8bit=False,
272
+ load_in_4bit=True,
273
+ use_flash_attention_2=True
274
+ )
275
+
276
+ prompts = [
277
+ """<|im_start|>system
278
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
279
+ <|im_start|>user
280
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
281
+ <|im_start|>assistant""",
282
+ ]
283
+
284
+ for chat in prompts:
285
+ print(chat)
286
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
287
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
288
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
289
+ print(f"Response: {response}")
290
+ ```
291
+
292
+ Hermes-3 3B is also fully supported on [vLLM](https://github.com/vllm-project/vllm).
293
+
294
+ ```bash
295
+ vllm serve NousResearch/Hermes-3-Llama-3.2-3B
296
+ ```
297
+
298
+ ## Inference Code for Function Calling:
299
+
300
+ All code for utilizing, parsing, and building function calling templates is available on our github:
301
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
302
+
303
+
304
+ ## Quantized Versions:
305
+
306
+ GGUF Quants: https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B-GGUF
307
+
308
+ # How to cite:
309
+
310
+ ```bibtext
311
+ @misc{teknium2024hermes3technicalreport,
312
+ title={Hermes 3 Technical Report},
313
+ author={Ryan Teknium and Jeffrey Quesnelle and Chen Guang},
314
+ year={2024},
315
+ eprint={2408.11857},
316
+ archivePrefix={arXiv},
317
+ primaryClass={cs.CL},
318
+ url={https://arxiv.org/abs/2408.11857},
319
+ }
320
+ ```
321
+
322
+
323
+