File size: 4,100 Bytes
6e3f345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
datasets:
- cerebras/SlimPajama-627B
- HuggingFaceH4/ultrachat_200k
- bigcode/starcoderdata
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
metrics:
- accuracy
- speed
library_name: transformers
tags:
- coder
- Text-Generation
- Transformers
- HelpingAI
license: mit
widget:
- text: |
<|system|>
You are a chatbot who can code!</s>
<|user|>
Write me a function to search for OEvortex on youtube use Webbrowser .</s>
<|assistant|>
- text: |
<|system|>
You are a chatbot who can be a teacher!</s>
<|user|>
Explain me working of AI .</s>
<|assistant|>
model-index:
- name: HelpingAI-Lite
results:
- task:
type: text-generation
metrics:
- name: Epoch
type: Training Epoch
value: 3
- name: Eval Logits/Chosen
type: Evaluation Logits for Chosen Samples
value: -2.707406759262085
- name: Eval Logits/Rejected
type: Evaluation Logits for Rejected Samples
value: -2.65652441978546
- name: Eval Logps/Chosen
type: Evaluation Log-probabilities for Chosen Samples
value: -370.129670421875
- name: Eval Logps/Rejected
type: Evaluation Log-probabilities for Rejected Samples
value: -296.073825390625
- name: Eval Loss
type: Evaluation Loss
value: 0.513750433921814
- name: Eval Rewards/Accuracies
type: Evaluation Rewards and Accuracies
value: 0.738095223903656
- name: Eval Rewards/Chosen
type: Evaluation Rewards for Chosen Samples
value: -0.0274422804903984
- name: Eval Rewards/Margins
type: Evaluation Rewards Margins
value: 1.008722543614307
- name: Eval Rewards/Rejected
type: Evaluation Rewards for Rejected Samples
value: -1.03616464138031
- name: Eval Runtime
type: Evaluation Runtime
value: 93.5908
- name: Eval Samples
type: Number of Evaluation Samples
value: 2000
- name: Eval Samples per Second
type: Evaluation Samples per Second
value: 21.37
- name: Eval Steps per Second
type: Evaluation Steps per Second
value: 0.673
---
![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
# QuantFactory/HelpingAI-Lite-GGUF
This is quantized version of [OEvortex/HelpingAI-Lite](https://huggingface.co/OEvortex/HelpingAI-Lite) created using llama.cpp
# Original Model Card
# HelpingAI-Lite
# Subscribe to my YouTube channel
[Subscribe](https://youtube.com/@OEvortex)
GGUF version [here](https://huggingface.co/OEvortex/HelpingAI-Lite-GGUF)
HelpingAI-Lite is a lite version of the HelpingAI model that can assist with coding tasks. It's trained on a diverse range of datasets and fine-tuned to provide accurate and helpful responses.
## License
This model is licensed under MIT.
## Datasets
The model was trained on the following datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
## Language
The model supports English language.
## Usage
# CPU and GPU code
```python
from transformers import pipeline
from accelerate import Accelerator
# Initialize the accelerator
accelerator = Accelerator()
# Initialize the pipeline
pipe = pipeline("text-generation", model="OEvortex/HelpingAI-Lite", device=accelerator.device)
# Define the messages
messages = [
{
"role": "system",
"content": "You are a chatbot who can help code!",
},
{
"role": "user",
"content": "Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.",
},
]
# Prepare the prompt
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Generate predictions
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
# Print the generated text
print(outputs[0]["generated_text"])
```
|