File size: 4,751 Bytes
6b71633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

---

base_model: unsloth/qwen2.5-coder-7b-instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
- fast-apply
- instant-apply

---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/FastApply-7B-v1.0-GGUF
This is quantized version of [Kortix/FastApply-7B-v1.0](https://huggingface.co/Kortix/FastApply-7B-v1.0) created using llama.cpp

# Original Model Card



# FastApply-7B-v1.0

[Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply)   
[Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0)    
[Try it now on 👉 Google Colab](https://colab.research.google.com/drive/1aBqM8Lqso0Xfgtr75G4LFQivXcChU_36?usp=sharing)

## Model Details

### Basic Information

- **Developed by:** Kortix
- **License:** apache-2.0
- **Finetuned from model:** [unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit)

### Model Description

FastApply-7B-v1.0 is a 7B model designed for instant code application, producing full file edits to power [SoftGen AI](https://softgen.ai/).    
It is part of the Fast Apply pipeline for data generation and fine-tuning Qwen2.5 Coder models.

The model achieves high throughput when deployed on fast providers like Fireworks while maintaining high edit accuracy, with a speed of approximately 150 tokens/second.

## Intended Use

FastApply-7B-v1.0 is intended for use in AI-powered code editors and tools that require fast, accurate code modifications. It is particularly well-suited for:

- Instant code application tasks
- Full file edits
- Integration with AI-powered code editors like Aider and PearAI
- Local tools to reduce the cost of frontier model output

## Inference template

FastApply-7B-v1.0 is based on the Qwen2.5 Coder architecture and is fine-tuned for code editing tasks. It uses a specific prompt structure for inference:

```
<|im_start|>system
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
<|im_start|>user
Merge all changes from the <update> snippet into the <code> below.
- Preserve the code's structure, order, comments, and indentation exactly.
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.

<code>{original_code}</code>

<update>{update_snippet}</update>

Provide the complete updated code.<|im_end|>
<|im_start|>assistant
```

The model's output is structured as:

```
<updated-code>[Full-complete updated file]</updated-code>
```

## Additional Information

For more details on the Fast Apply pipeline, data generation process, and deployment instructions, please refer to the [GitHub repository](https://github.com/kortix-ai/fast-apply).

## How to Use

To use the model, you can load it using the Hugging Face Transformers library:


```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-7B-v1.0")
tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-7B-v1.0")

# Prepare your input following the prompt structure mentioned above
input_text = """<|im_start|>system
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
<|im_start|>user
Merge all changes from the <update> snippet into the <code> below.
- Preserve the code's structure, order, comments, and indentation exactly.
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.

<code>{original_code}</code>

<update>{update_snippet}</update>

Provide the complete updated code.<|im_end|>
<|im_start|>assistant
"""

input_text = input_text.format(
    original_code=original_code,
    update_snippet=update_snippet,
).strip() 

# Generate the response
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=8192,)

response = tokenizer.decode(output[0][len(input_ids[0]):])
print(response)

# Extract the updated code from the response
updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0]
```


## Evaluation:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/650d7ecb23e8028a8970a203/_E6WVzuVABKB58QMx6c1c.png)