File size: 11,040 Bytes
39c1a61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
---
base_model: tiiuae/Falcon3-10B-Base
library_name: transformers
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
tags:
- falcon3
model-index:
- name: Falcon3-10B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 78.17
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 44.82
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 25.91
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.51
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.61
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.1
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
name: Open LLM Leaderboard
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Falcon3-10B-Instruct-GGUF
This is quantized version of [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct) created using llama.cpp
# Original Model Card
<div align="center">
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>
# Falcon3-10B-Instruct
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
This repository contains the **Falcon3-10B-Instruct**. It achieves state-of-the-art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-10B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.
## Model Details
- Architecture
- Transformer-based causal decoder-only architecture
- 40 decoder blocks
- Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
- Wider head dimension: 256
- High RoPE value to support long context understanding: 1000042
- Uses SwiGLu and RMSNorm
- 32K context length
- 131K vocab size
- Depth up-scaled from **Falcon3-7B-Base** with 2 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Posttrained on 1.2 million samples of STEM, conversational, code, safety and function call data
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
## Getting started
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "tiiuae/Falcon3-10B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many hours in one day?"
messages = [
{"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
</details>
<br>
## Benchmarks
We report in the following table our internal pipeline benchmarks.
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
- We report **raw scores** obtained by applying chat template **without fewshot_as_multiturn** (unlike Llama3.1).
- We use same batch-size across all models.
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Category</th>
<th>Benchmark</th>
<th>Yi-1.5-9B-Chat</th>
<th>Mistral-Nemo-Base-2407 (12B)</th>
<th>Falcon3-10B-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">General</td>
<td>MMLU (5-shot)</td>
<td>70</td>
<td>65.9</td>
<td><b>71.6</td>
</tr>
<tr>
<td>MMLU-PRO (5-shot)</td>
<td>39.6</td>
<td>32.7</td>
<td><b>44</td>
</tr>
<tr>
<td>IFEval</td>
<td>57.6</td>
<td>63.4</td>
<td><b>78</td>
</tr>
<tr>
<td rowspan="3">Math</td>
<td>GSM8K (5-shot)</td>
<td>76.6</td>
<td>73.8</td>
<td><b>83.1</td>
</tr>
<tr>
<td>GSM8K (8-shot, COT)</td>
<td>78.5</td>
<td>73.6</td>
<td><b>81.3</td>
</tr>
<tr>
<td>MATH Lvl-5 (4-shot)</td>
<td>8.8</td>
<td>0.4</td>
<td><b>22.1</td>
</tr>
<tr>
<td rowspan="5">Reasoning</td>
<td>Arc Challenge (25-shot)</td>
<td>51.9</td>
<td>61.6</td>
<td><b>64.5</td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td><b>35.4</td>
<td>33.2</td>
<td>33.5</td>
</tr>
<tr>
<td>GPQA (0-shot, COT)</td>
<td>16</td>
<td>12.7</td>
<td><b>32.6</td>
</tr>
<tr>
<td>MUSR (0-shot)</td>
<td><b>41.9</td>
<td>38.1</td>
<td>41.1</td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td>49.2</td>
<td>43.6</td>
<td><b>58.4</td>
</tr>
<tr>
<td rowspan="4">CommonSense Understanding</td>
<td>PIQA (0-shot)</td>
<td>76.4</td>
<td>78.2</td>
<td><b>78.4</td>
</tr>
<tr>
<td>SciQ (0-shot)</td>
<td>61.7</td>
<td>76.4</td>
<td><b>90.4</td>
</tr>
<tr>
<td>Winogrande (0-shot)</td>
<td>-</td>
<td>-</td>
<td>71.3</td>
</tr>
<tr>
<td>OpenbookQA (0-shot)</td>
<td>43.2</td>
<td>47.4</td>
<td><b>48.2</td>
</tr>
<tr>
<td rowspan="2">Instructions following</td>
<td>MT-Bench (avg)</td>
<td>8.28</td>
<td><b>8.6</td>
<td>8.17</td>
</tr>
<tr>
<td>Alpaca (WC)</td>
<td>25.81</td>
<td><b>45.44</td>
<td>24.7</td>
</tr>
<tr>
<td>Tool use</td>
<td>BFCL AST (avg)</td>
<td>48.4</td>
<td>74.2</td>
<td><b>86.3</td>
</tr>
<tr>
<td rowspan="2">Code</td>
<td>EvalPlus (0-shot) (avg)</td>
<td>69.4</td>
<td>58.9</td>
<td><b>74.7</b></td>
</tr>
<tr>
<td>Multipl-E (0-shot) (avg)</td>
<td>-</td>
<td>34.5</td>
<td><b>45.8</b></td>
</tr>
</tbody>
</table>
## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
## Technical Report
Coming soon....
## Citation
If Falcon3 family were helpful in your work, feel free to give us a cite.
```
@misc{Falcon3,
title = {The Falcon 3 family of Open Models},
author = {TII Team},
month = {December},
year = {2024}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/tiiuae__Falcon3-10B-Instruct-details)
| Metric |Value|
|-------------------|----:|
|Avg. |35.19|
|IFEval (0-Shot) |78.17|
|BBH (3-Shot) |44.82|
|MATH Lvl 5 (4-Shot)|25.91|
|GPQA (0-shot) |10.51|
|MuSR (0-shot) |13.61|
|MMLU-PRO (5-shot) |38.10|
|