Created model card
Browse files
README.md
CHANGED
@@ -1,4 +1,34 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
---
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
---
|
5 |
+
|
6 |
+
ONNX port of [prithivida/Splade_PP_en_v1](https://huggingface.co/prithivida/Splade_PP_en_v1) text classification and similarity searches.
|
7 |
+
|
8 |
+
### Usage
|
9 |
+
|
10 |
+
Here's an example of performing inference using the model with [FastEmbed](https://github.com/qdrant/fastembed).
|
11 |
+
|
12 |
+
```py
|
13 |
+
from fastembed import SparseTextEmbedding
|
14 |
+
|
15 |
+
documents = [
|
16 |
+
"You should stay, study and sprint.",
|
17 |
+
"History can only prepare us to be surprised yet again.",
|
18 |
+
]
|
19 |
+
|
20 |
+
model = SparseTextEmbedding(model_name="prithivida/Splade_PP_en_v1")
|
21 |
+
embeddings = list(embedding_model.embed(documents))
|
22 |
+
|
23 |
+
# [
|
24 |
+
# SparseEmbedding(values=array(
|
25 |
+
# [0.45940185, 0.64054322, 0.2425732, 0.1623179, 1.20566428,
|
26 |
+
# 0.62039357...]),
|
27 |
+
# indices=array([1012, 1998, 2000, 2005, 2017, 2022...])),
|
28 |
+
# SparseEmbedding(values=array([
|
29 |
+
# 0.09767706, 0.4374367, 0.00468039, 1.01167965, 1.02318227, 1.30155718
|
30 |
+
# ...]),
|
31 |
+
# indices=array([2017, 2022, 2025, 2057, 2064, 2069...]))
|
32 |
+
# ]
|
33 |
+
|
34 |
+
```
|