my_text_gen_model

This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Rouge1: 0.395
  • Rouge2: 0.376
  • Rougel: 0.3954
  • Rougelsum: 0.3949
  • Gen Len: 18.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 202 0.0000 0.395 0.376 0.3954 0.3949 18.0
No log 2.0 404 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.008 3.0 606 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.008 4.0 808 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0042 5.0 1010 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0042 6.0 1212 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0042 7.0 1414 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0022 8.0 1616 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0022 9.0 1818 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.004 10.0 2020 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.004 11.0 2222 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.004 12.0 2424 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0025 13.0 2626 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0025 14.0 2828 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0016 15.0 3030 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0016 16.0 3232 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0016 17.0 3434 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0019 18.0 3636 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0019 19.0 3838 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0019 20.0 4040 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0019 21.0 4242 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0019 22.0 4444 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0012 23.0 4646 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0012 24.0 4848 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0013 25.0 5050 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0013 26.0 5252 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0013 27.0 5454 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0012 28.0 5656 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0012 29.0 5858 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0015 30.0 6060 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0015 31.0 6262 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0015 32.0 6464 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0011 33.0 6666 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0011 34.0 6868 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0011 35.0 7070 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0011 36.0 7272 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0011 37.0 7474 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0011 38.0 7676 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0011 39.0 7878 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0009 40.0 8080 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0009 41.0 8282 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0009 42.0 8484 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0004 43.0 8686 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0004 44.0 8888 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0006 45.0 9090 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0006 46.0 9292 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0006 47.0 9494 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0007 48.0 9696 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0007 49.0 9898 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0008 50.0 10100 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0008 51.0 10302 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 52.0 10504 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 53.0 10706 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 54.0 10908 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 55.0 11110 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 56.0 11312 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 57.0 11514 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 58.0 11716 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 59.0 11918 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0015 60.0 12120 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0015 61.0 12322 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 62.0 12524 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 63.0 12726 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 64.0 12928 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0013 65.0 13130 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0013 66.0 13332 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 67.0 13534 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 68.0 13736 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 69.0 13938 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0001 70.0 14140 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0001 71.0 14342 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 72.0 14544 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 73.0 14746 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 74.0 14948 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 75.0 15150 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 76.0 15352 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0004 77.0 15554 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0004 78.0 15756 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0004 79.0 15958 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0004 80.0 16160 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0004 81.0 16362 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 82.0 16564 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 83.0 16766 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 84.0 16968 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 85.0 17170 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0005 86.0 17372 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 87.0 17574 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 88.0 17776 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 89.0 17978 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 90.0 18180 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0002 91.0 18382 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0001 92.0 18584 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0001 93.0 18786 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0001 94.0 18988 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 95.0 19190 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0003 96.0 19392 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0 97.0 19594 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0 98.0 19796 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0 99.0 19998 0.0000 0.395 0.376 0.3954 0.3949 18.0
0.0001 100.0 20200 0.0000 0.395 0.376 0.3954 0.3949 18.0

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.