sharpenb commited on
Commit
d44ab70
·
verified ·
1 Parent(s): 989652f

Upload folder using huggingface_hub (#1)

Browse files

- c7678bf8dd0893351da3ed0dba0d1bd9a66bbebe69cb2a0c5da11d37fd8b9066 (39826512f63805a4b4f49b7dc97a2dd8cb0cee5e)

README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pruna-engine
3
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ ---
12
+ <!-- header start -->
13
+ <!-- 200823 -->
14
+ <div style="width: auto; margin-left: auto; margin-right: auto">
15
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
16
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
17
+ </a>
18
+ </div>
19
+ <!-- header end -->
20
+
21
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
22
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
23
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
24
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
25
+
26
+ # Simply make AI models cheaper, smaller, faster, and greener!
27
+
28
+ - Give a thumbs up if you like this model!
29
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
30
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
31
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
32
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
33
+
34
+ ## Results
35
+
36
+ ![image info](./plots.png)
37
+
38
+ **Frequently Asked Questions**
39
+ - ***How does the compression work?*** The model is compressed with llm-int8.
40
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
41
+ - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
42
+ - ***What is the model format?*** We use safetensors.
43
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
44
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
45
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
46
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
47
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
48
+
49
+ ## Setup
50
+
51
+ You can run the smashed model with these steps:
52
+
53
+ 0. Check requirements from the original repo microsoft/phi-1 installed. In particular, check python, cuda, and transformers versions.
54
+ 1. Make sure that you have installed quantization related packages.
55
+ ```bash
56
+ pip install transformers accelerate bitsandbytes>0.37.0
57
+ ```
58
+ 2. Load & run the model.
59
+ ```python
60
+ from transformers import AutoModelForCausalLM, AutoTokenizer
61
+
62
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/microsoft-phi-1-bnb-8bit-smashed",
63
+ trust_remote_code=True)
64
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
65
+
66
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
67
+
68
+ outputs = model.generate(input_ids, max_new_tokens=216)
69
+ tokenizer.decode(outputs[0])
70
+ ```
71
+
72
+ ## Configurations
73
+
74
+ The configuration info are in `smash_config.json`.
75
+
76
+ ## Credits & License
77
+
78
+ The license of the smashed model follows the license of the original model. Please check the license of the original model microsoft/phi-1 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
79
+
80
+ ## Want to compress other models?
81
+
82
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
83
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/tmp/tmpt9t7q33q",
3
+ "architectures": [
4
+ "PhiForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi.PhiConfig",
9
+ "AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
10
+ },
11
+ "bos_token_id": null,
12
+ "embd_pdrop": 0.0,
13
+ "eos_token_id": null,
14
+ "hidden_act": "gelu_new",
15
+ "hidden_size": 2048,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 8192,
18
+ "layer_norm_eps": 1e-05,
19
+ "max_position_embeddings": 2048,
20
+ "model_type": "phi",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 24,
23
+ "num_key_value_heads": 32,
24
+ "partial_rotary_factor": 0.5,
25
+ "qk_layernorm": false,
26
+ "quantization_config": {
27
+ "bnb_4bit_compute_dtype": "bfloat16",
28
+ "bnb_4bit_quant_type": "fp4",
29
+ "bnb_4bit_use_double_quant": true,
30
+ "llm_int8_enable_fp32_cpu_offload": false,
31
+ "llm_int8_has_fp16_weight": false,
32
+ "llm_int8_skip_modules": [
33
+ "lm_head"
34
+ ],
35
+ "llm_int8_threshold": 6.0,
36
+ "load_in_4bit": false,
37
+ "load_in_8bit": true,
38
+ "quant_method": "bitsandbytes"
39
+ },
40
+ "resid_pdrop": 0.0,
41
+ "rope_scaling": null,
42
+ "rope_theta": 10000.0,
43
+ "tie_word_embeddings": false,
44
+ "torch_dtype": "float16",
45
+ "transformers_version": "4.37.1",
46
+ "use_cache": true,
47
+ "vocab_size": 51200
48
+ }
configuration_phi.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/resolve/main/config.json",
27
+ }
28
+
29
+
30
+ class PhiConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the Phi
35
+ [microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 51200):
42
+ Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`PhiModel`].
44
+ hidden_size (`int`, *optional*, defaults to 2048):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 8192):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 24):
49
+ Number of hidden layers in the Transformer decoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer decoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
61
+ Dropout probability for mlp outputs.
62
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
63
+ The dropout ratio for the embeddings.
64
+ attention_dropout (`float`, *optional*, defaults to 0.0):
65
+ The dropout ratio after computing the attention scores.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
70
+ tokens.
71
+ initializer_range (`float`, *optional*, defaults to 0.02):
72
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
73
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
74
+ The epsilon used by the rms normalization layers.
75
+ use_cache (`bool`, *optional*, defaults to `True`):
76
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
77
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
+ Whether to tie weight embeddings
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ rope_scaling (`Dict`, *optional*):
83
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
84
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
85
+ is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
86
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
87
+ these scaling strategies behave:
88
+ https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
89
+ is an experimental feature, subject to breaking API changes in future versions.
90
+ partial_rotary_factor (`float`, *optional*, defaults to 0.5):
91
+ Percentage of the query and keys which will have rotary embedding.
92
+ qk_layernorm (`bool`, *optional*, defaults to `False`):
93
+ Whether or not to normalize the Queries and Keys after projecting the hidden states.
94
+ bos_token_id (`int`, *optional*, defaults to 1):
95
+ Denotes beginning of sequences token id.
96
+ eos_token_id (`int`, *optional*, defaults to 2):
97
+ Denotes end of sequences token id.
98
+
99
+ Example:
100
+
101
+ ```python
102
+ >>> from transformers import PhiModel, PhiConfig
103
+
104
+ >>> # Initializing a Phi-1 style configuration
105
+ >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
106
+
107
+ >>> # Initializing a model from the configuration
108
+ >>> model = PhiModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "phi"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=51200,
120
+ hidden_size=2048,
121
+ intermediate_size=8192,
122
+ num_hidden_layers=24,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ resid_pdrop=0.0,
126
+ embd_pdrop=0.0,
127
+ attention_dropout=0.0,
128
+ hidden_act="gelu_new",
129
+ max_position_embeddings=2048,
130
+ initializer_range=0.02,
131
+ layer_norm_eps=1e-5,
132
+ use_cache=True,
133
+ tie_word_embeddings=False,
134
+ rope_theta=10000.0,
135
+ rope_scaling=None,
136
+ partial_rotary_factor=0.5,
137
+ qk_layernorm=False,
138
+ bos_token_id=1,
139
+ eos_token_id=2,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.hidden_size = hidden_size
144
+ self.intermediate_size = intermediate_size
145
+ self.num_hidden_layers = num_hidden_layers
146
+ self.num_attention_heads = num_attention_heads
147
+
148
+ if num_key_value_heads is None:
149
+ num_key_value_heads = num_attention_heads
150
+
151
+ self.num_key_value_heads = num_key_value_heads
152
+ self.resid_pdrop = resid_pdrop
153
+ self.embd_pdrop = embd_pdrop
154
+ self.attention_dropout = attention_dropout
155
+ self.hidden_act = hidden_act
156
+ self.max_position_embeddings = max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.layer_norm_eps = layer_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self.partial_rotary_factor = partial_rotary_factor
163
+ self.qk_layernorm = qk_layernorm
164
+ self._rope_scaling_validation()
165
+
166
+ super().__init__(
167
+ bos_token_id=bos_token_id,
168
+ eos_token_id=eos_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
174
+ def _rope_scaling_validation(self):
175
+ """
176
+ Validate the `rope_scaling` configuration.
177
+ """
178
+ if self.rope_scaling is None:
179
+ return
180
+
181
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
182
+ raise ValueError(
183
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
184
+ f"got {self.rope_scaling}"
185
+ )
186
+ rope_scaling_type = self.rope_scaling.get("type", None)
187
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
189
+ raise ValueError(
190
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
191
+ )
192
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
193
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.1"
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e9831c2e8e25c019ce298c6f54cf80c1bd85dd8b0572886985725c9c0596cea
3
+ size 1630402264
modeling_phi.py ADDED
@@ -0,0 +1,1369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi model."""
17
+
18
+
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache
30
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ SequenceClassifierOutputWithPast,
35
+ TokenClassifierOutput,
36
+ )
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import (
39
+ add_code_sample_docstrings,
40
+ add_start_docstrings,
41
+ add_start_docstrings_to_model_forward,
42
+ is_flash_attn_2_available,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+ from .configuration_phi import PhiConfig
48
+
49
+
50
+ try: # noqa: SIM105
51
+ if is_flash_attn_2_available():
52
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
53
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
54
+ except ImportError:
55
+ # Workaround for https://github.com/huggingface/transformers/issues/28459,
56
+ # don't move to contextlib.suppress(ImportError)
57
+ pass
58
+
59
+
60
+ logger = logging.get_logger(__name__)
61
+
62
+ _CHECKPOINT_FOR_DOC = "microsoft/phi-1"
63
+ _CONFIG_FOR_DOC = "PhiConfig"
64
+
65
+ PHI_PRETRAINED_MODEL_ARCHIVE_LIST = [
66
+ "microsoft/phi-1",
67
+ # See all Phi models at https://huggingface.co/models?filter=phi
68
+ ]
69
+
70
+
71
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
72
+ def _get_unpad_data(attention_mask):
73
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
74
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
75
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
76
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
77
+ return (
78
+ indices,
79
+ cu_seqlens,
80
+ max_seqlen_in_batch,
81
+ )
82
+
83
+
84
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi
85
+ class PhiRotaryEmbedding(nn.Module):
86
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
87
+ super().__init__()
88
+
89
+ self.dim = dim
90
+ self.max_position_embeddings = max_position_embeddings
91
+ self.base = base
92
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
93
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
94
+
95
+ # Build here to make `torch.jit.trace` work.
96
+ self._set_cos_sin_cache(
97
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
98
+ )
99
+
100
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
101
+ self.max_seq_len_cached = seq_len
102
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
103
+
104
+ freqs = torch.outer(t, self.inv_freq)
105
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
106
+ emb = torch.cat((freqs, freqs), dim=-1)
107
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
108
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
109
+
110
+ def forward(self, x, seq_len=None):
111
+ # x: [bs, num_attention_heads, seq_len, head_size]
112
+ if seq_len > self.max_seq_len_cached:
113
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
114
+
115
+ return (
116
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
117
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
118
+ )
119
+
120
+
121
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
122
+ class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
123
+ """PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
124
+
125
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
126
+ self.scaling_factor = scaling_factor
127
+ super().__init__(dim, max_position_embeddings, base, device)
128
+
129
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
130
+ self.max_seq_len_cached = seq_len
131
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
132
+ t = t / self.scaling_factor
133
+
134
+ freqs = torch.outer(t, self.inv_freq)
135
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
136
+ emb = torch.cat((freqs, freqs), dim=-1)
137
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
138
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
139
+
140
+
141
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
142
+ class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
143
+ """PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
144
+
145
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
146
+ self.scaling_factor = scaling_factor
147
+ super().__init__(dim, max_position_embeddings, base, device)
148
+
149
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
150
+ self.max_seq_len_cached = seq_len
151
+
152
+ if seq_len > self.max_position_embeddings:
153
+ base = self.base * (
154
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
155
+ ) ** (self.dim / (self.dim - 2))
156
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
157
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
158
+
159
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
160
+
161
+ freqs = torch.outer(t, self.inv_freq)
162
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
163
+ emb = torch.cat((freqs, freqs), dim=-1)
164
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
165
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
166
+
167
+
168
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
169
+ def rotate_half(x):
170
+ """Rotates half the hidden dims of the input."""
171
+ x1 = x[..., : x.shape[-1] // 2]
172
+ x2 = x[..., x.shape[-1] // 2 :]
173
+ return torch.cat((-x2, x1), dim=-1)
174
+
175
+
176
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
177
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
178
+ """Applies Rotary Position Embedding to the query and key tensors.
179
+
180
+ Args:
181
+ q (`torch.Tensor`): The query tensor.
182
+ k (`torch.Tensor`): The key tensor.
183
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
184
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
185
+ position_ids (`torch.Tensor`):
186
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
187
+ used to pass offsetted position ids when working with a KV-cache.
188
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
189
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
190
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
191
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
192
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
193
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
194
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
195
+ Returns:
196
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
197
+ """
198
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
199
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
200
+ q_embed = (q * cos) + (rotate_half(q) * sin)
201
+ k_embed = (k * cos) + (rotate_half(k) * sin)
202
+ return q_embed, k_embed
203
+
204
+
205
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
206
+ class PhiMLP(nn.Module):
207
+ def __init__(self, config):
208
+ super().__init__()
209
+ self.config = config
210
+ self.activation_fn = ACT2FN[config.hidden_act]
211
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
212
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
213
+
214
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
215
+ hidden_states = self.fc1(hidden_states)
216
+ hidden_states = self.activation_fn(hidden_states)
217
+ hidden_states = self.fc2(hidden_states)
218
+ return hidden_states
219
+
220
+
221
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
222
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
223
+ """
224
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
225
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
226
+ """
227
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
228
+ if n_rep == 1:
229
+ return hidden_states
230
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
231
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
232
+
233
+
234
+ class PhiAttention(nn.Module):
235
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
236
+
237
+ def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
238
+ super().__init__()
239
+ self.config = config
240
+ self.layer_idx = layer_idx
241
+ if layer_idx is None:
242
+ logger.warning_once(
243
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
244
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
245
+ "when creating this class."
246
+ )
247
+
248
+ self.attention_dropout = config.attention_dropout
249
+ self.hidden_size = config.hidden_size
250
+ self.num_heads = config.num_attention_heads
251
+ self.head_dim = self.hidden_size // self.num_heads
252
+ self.num_key_value_heads = config.num_key_value_heads
253
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
254
+ self.max_position_embeddings = config.max_position_embeddings
255
+ self.rope_theta = config.rope_theta
256
+ self.partial_rotary_factor = config.partial_rotary_factor
257
+ self.is_causal = True
258
+
259
+ if (self.head_dim * self.num_heads) != self.hidden_size:
260
+ raise ValueError(
261
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
262
+ f" and `num_heads`: {self.num_heads})."
263
+ )
264
+
265
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
266
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
267
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
268
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
269
+
270
+ self.qk_layernorm = config.qk_layernorm
271
+ if self.qk_layernorm:
272
+ self.q_layernorm = nn.LayerNorm(
273
+ config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
274
+ )
275
+ self.k_layernorm = nn.LayerNorm(
276
+ config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
277
+ )
278
+
279
+ self._init_rope()
280
+
281
+ def _init_rope(self):
282
+ if self.config.rope_scaling is None:
283
+ self.rotary_emb = PhiRotaryEmbedding(
284
+ int(self.partial_rotary_factor * self.head_dim),
285
+ max_position_embeddings=self.max_position_embeddings,
286
+ base=self.rope_theta,
287
+ )
288
+ else:
289
+ scaling_type = self.config.rope_scaling["type"]
290
+ scaling_factor = self.config.rope_scaling["factor"]
291
+ if scaling_type == "linear":
292
+ self.rotary_emb = PhiLinearScalingRotaryEmbedding(
293
+ int(self.partial_rotary_factor * self.head_dim),
294
+ max_position_embeddings=self.max_position_embeddings,
295
+ scaling_factor=scaling_factor,
296
+ base=self.rope_theta,
297
+ )
298
+ elif scaling_type == "dynamic":
299
+ self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
300
+ int(self.partial_rotary_factor * self.head_dim),
301
+ max_position_embeddings=self.max_position_embeddings,
302
+ scaling_factor=scaling_factor,
303
+ base=self.rope_theta,
304
+ )
305
+ else:
306
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
307
+
308
+ def forward(
309
+ self,
310
+ hidden_states: torch.Tensor,
311
+ attention_mask: Optional[torch.Tensor] = None,
312
+ position_ids: Optional[torch.LongTensor] = None,
313
+ past_key_value: Optional[Cache] = None,
314
+ output_attentions: bool = False,
315
+ use_cache: bool = False,
316
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
317
+ bsz, q_len, _ = hidden_states.size()
318
+
319
+ query_states = self.q_proj(hidden_states)
320
+ key_states = self.k_proj(hidden_states)
321
+ value_states = self.v_proj(hidden_states)
322
+
323
+ if self.qk_layernorm:
324
+ query_states = self.q_layernorm(query_states)
325
+ key_states = self.k_layernorm(key_states)
326
+
327
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
328
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
329
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
330
+
331
+ kv_seq_len = key_states.shape[-2]
332
+ if past_key_value is not None:
333
+ if self.layer_idx is None:
334
+ raise ValueError(
335
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
336
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
337
+ "with a layer index."
338
+ )
339
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
340
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
341
+
342
+ # Partial rotary embedding
343
+ query_rot, query_pass = (
344
+ query_states[..., : self.rotary_emb.dim],
345
+ query_states[..., self.rotary_emb.dim :],
346
+ )
347
+ key_rot, key_pass = (
348
+ key_states[..., : self.rotary_emb.dim],
349
+ key_states[..., self.rotary_emb.dim :],
350
+ )
351
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
352
+ query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
353
+
354
+ # [batch_size, seq_length, num_heads, head_dim]
355
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
356
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
357
+
358
+ if past_key_value is not None:
359
+ cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
360
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
361
+
362
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
363
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
364
+
365
+ # Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
366
+ attn_weights = torch.matmul(
367
+ query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
368
+ ) / math.sqrt(self.head_dim)
369
+
370
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
371
+ raise ValueError(
372
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
373
+ f" {attn_weights.size()}"
374
+ )
375
+
376
+ if attention_mask is not None:
377
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
378
+ raise ValueError(
379
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
380
+ )
381
+ attn_weights = attn_weights + attention_mask
382
+
383
+ # upcast attention to fp32
384
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
385
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
386
+
387
+ attn_output = torch.matmul(attn_weights, value_states)
388
+
389
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
390
+ raise ValueError(
391
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
392
+ f" {attn_output.size()}"
393
+ )
394
+
395
+ attn_output = attn_output.transpose(1, 2).contiguous()
396
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
397
+
398
+ attn_output = self.dense(attn_output)
399
+
400
+ if not output_attentions:
401
+ attn_weights = None
402
+
403
+ return attn_output, attn_weights, past_key_value
404
+
405
+
406
+ class PhiFlashAttention2(PhiAttention):
407
+ """
408
+ Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
409
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
410
+ flash attention and deal with padding tokens in case the input contains any of them.
411
+ """
412
+
413
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
414
+ def __init__(self, *args, **kwargs):
415
+ super().__init__(*args, **kwargs)
416
+
417
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
418
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
419
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
420
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
421
+
422
+ def forward(
423
+ self,
424
+ hidden_states: torch.Tensor,
425
+ attention_mask: Optional[torch.LongTensor] = None,
426
+ position_ids: Optional[torch.LongTensor] = None,
427
+ past_key_value: Optional[Cache] = None,
428
+ output_attentions: bool = False,
429
+ use_cache: bool = False,
430
+ **kwargs,
431
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
432
+ # PhiFlashAttention2 attention does not support output_attentions
433
+
434
+ output_attentions = False
435
+
436
+ bsz, q_len, _ = hidden_states.size()
437
+
438
+ query_states = self.q_proj(hidden_states)
439
+ key_states = self.k_proj(hidden_states)
440
+ value_states = self.v_proj(hidden_states)
441
+
442
+ if self.qk_layernorm:
443
+ query_states = self.q_layernorm(query_states)
444
+ key_states = self.k_layernorm(key_states)
445
+
446
+ # Flash attention requires the input to have the shape
447
+ # batch_size x seq_length x head_dim x hidden_dim
448
+ # therefore we just need to keep the original shape
449
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
450
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
451
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
452
+
453
+ kv_seq_len = key_states.shape[-2]
454
+ if past_key_value is not None:
455
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
456
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
457
+
458
+ # Partial rotary embedding
459
+ query_rot, query_pass = (
460
+ query_states[..., : self.rotary_emb.dim],
461
+ query_states[..., self.rotary_emb.dim :],
462
+ )
463
+ key_rot, key_pass = (
464
+ key_states[..., : self.rotary_emb.dim],
465
+ key_states[..., self.rotary_emb.dim :],
466
+ )
467
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
468
+ query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
469
+
470
+ # [batch_size, seq_length, num_heads, head_dim]
471
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
472
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
473
+
474
+ if past_key_value is not None:
475
+ cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
476
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
477
+
478
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
479
+ # to be able to avoid many of these transpose/reshape/view.
480
+ query_states = query_states.transpose(1, 2)
481
+ key_states = key_states.transpose(1, 2)
482
+ value_states = value_states.transpose(1, 2)
483
+
484
+ attn_dropout = self.attention_dropout if self.training else 0.0
485
+
486
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
487
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
488
+ # cast them back in the correct dtype just to be sure everything works as expected.
489
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
490
+ # in fp32.
491
+
492
+ if query_states.dtype == torch.float32:
493
+ if torch.is_autocast_enabled():
494
+ target_dtype = torch.get_autocast_gpu_dtype()
495
+ # Handle the case where the model is quantized
496
+ elif hasattr(self.config, "_pre_quantization_dtype"):
497
+ target_dtype = self.config._pre_quantization_dtype
498
+ else:
499
+ target_dtype = self.q_proj.weight.dtype
500
+
501
+ logger.warning_once(
502
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
503
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
504
+ f" {target_dtype}."
505
+ )
506
+
507
+ query_states = query_states.to(target_dtype)
508
+ key_states = key_states.to(target_dtype)
509
+ value_states = value_states.to(target_dtype)
510
+
511
+ attn_output = self._flash_attention_forward(
512
+ query_states, key_states, value_states, attention_mask, q_len, dropout=attn_dropout, softmax_scale=None
513
+ )
514
+
515
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
516
+ attn_output = self.dense(attn_output)
517
+
518
+ if not output_attentions:
519
+ attn_weights = None
520
+
521
+ return attn_output, attn_weights, past_key_value
522
+
523
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
524
+ def _flash_attention_forward(
525
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
526
+ ):
527
+ """
528
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
529
+ first unpad the input, then computes the attention scores and pad the final attention scores.
530
+
531
+ Args:
532
+ query_states (`torch.Tensor`):
533
+ Input query states to be passed to Flash Attention API
534
+ key_states (`torch.Tensor`):
535
+ Input key states to be passed to Flash Attention API
536
+ value_states (`torch.Tensor`):
537
+ Input value states to be passed to Flash Attention API
538
+ attention_mask (`torch.Tensor`):
539
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
540
+ position of padding tokens and 1 for the position of non-padding tokens.
541
+ dropout (`int`, *optional*):
542
+ Attention dropout
543
+ softmax_scale (`float`, *optional*):
544
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
545
+ """
546
+ if not self._flash_attn_uses_top_left_mask:
547
+ causal = self.is_causal
548
+ else:
549
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
550
+ causal = self.is_causal and query_length != 1
551
+
552
+ # Contains at least one padding token in the sequence
553
+ if attention_mask is not None:
554
+ batch_size = query_states.shape[0]
555
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
556
+ query_states, key_states, value_states, attention_mask, query_length
557
+ )
558
+
559
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
560
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
561
+
562
+ attn_output_unpad = flash_attn_varlen_func(
563
+ query_states,
564
+ key_states,
565
+ value_states,
566
+ cu_seqlens_q=cu_seqlens_q,
567
+ cu_seqlens_k=cu_seqlens_k,
568
+ max_seqlen_q=max_seqlen_in_batch_q,
569
+ max_seqlen_k=max_seqlen_in_batch_k,
570
+ dropout_p=dropout,
571
+ softmax_scale=softmax_scale,
572
+ causal=causal,
573
+ )
574
+
575
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
576
+ else:
577
+ attn_output = flash_attn_func(
578
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
579
+ )
580
+
581
+ return attn_output
582
+
583
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
584
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
585
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
586
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
587
+
588
+ key_layer = index_first_axis(
589
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
590
+ )
591
+ value_layer = index_first_axis(
592
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
593
+ )
594
+ if query_length == kv_seq_len:
595
+ query_layer = index_first_axis(
596
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
597
+ )
598
+ cu_seqlens_q = cu_seqlens_k
599
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
600
+ indices_q = indices_k
601
+ elif query_length == 1:
602
+ max_seqlen_in_batch_q = 1
603
+ cu_seqlens_q = torch.arange(
604
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
605
+ ) # There is a memcpy here, that is very bad.
606
+ indices_q = cu_seqlens_q[:-1]
607
+ query_layer = query_layer.squeeze(1)
608
+ else:
609
+ # The -q_len: slice assumes left padding.
610
+ attention_mask = attention_mask[:, -query_length:]
611
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
612
+
613
+ return (
614
+ query_layer,
615
+ key_layer,
616
+ value_layer,
617
+ indices_q,
618
+ (cu_seqlens_q, cu_seqlens_k),
619
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
620
+ )
621
+
622
+
623
+ PHI_ATTENTION_CLASSES = {
624
+ "eager": PhiAttention,
625
+ "flash_attention_2": PhiFlashAttention2,
626
+ }
627
+
628
+
629
+ class PhiDecoderLayer(nn.Module):
630
+ def __init__(self, config: PhiConfig, layer_idx: int):
631
+ super().__init__()
632
+ self.self_attn = PHI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
633
+ self.mlp = PhiMLP(config)
634
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
635
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
636
+
637
+ def forward(
638
+ self,
639
+ hidden_states: torch.Tensor,
640
+ attention_mask: Optional[torch.Tensor] = None,
641
+ position_ids: Optional[torch.LongTensor] = None,
642
+ output_attentions: Optional[bool] = False,
643
+ use_cache: Optional[bool] = False,
644
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
645
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
646
+ """
647
+ Args:
648
+ hidden_states (`torch.FloatTensor`):
649
+ input to the layer of shape `(batch, seq_len, embed_dim)`
650
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
651
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
652
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
653
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
654
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
655
+ output_attentions (`bool`, *optional*):
656
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
657
+ returned tensors for more detail.
658
+ use_cache (`bool`, *optional*):
659
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
660
+ (see `past_key_values`).
661
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
662
+ """
663
+
664
+ residual = hidden_states
665
+
666
+ hidden_states = self.input_layernorm(hidden_states)
667
+
668
+ # Self Attention
669
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
670
+ hidden_states=hidden_states,
671
+ attention_mask=attention_mask,
672
+ position_ids=position_ids,
673
+ past_key_value=past_key_value,
674
+ output_attentions=output_attentions,
675
+ use_cache=use_cache,
676
+ )
677
+ attn_outputs = self.resid_dropout(attn_outputs)
678
+
679
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
680
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
681
+ outputs = (hidden_states,)
682
+
683
+ if output_attentions:
684
+ outputs += (self_attn_weights,)
685
+
686
+ if use_cache:
687
+ outputs += (present_key_value,)
688
+
689
+ return outputs
690
+
691
+
692
+ PHI_START_DOCSTRING = r"""
693
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
694
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
695
+ etc.)
696
+
697
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
698
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
699
+ and behavior.
700
+
701
+ Parameters:
702
+ config ([`PhiConfig`]):
703
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
704
+ load the weights associated with the model, only the configuration. Check out the
705
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
706
+ """
707
+
708
+
709
+ @add_start_docstrings(
710
+ "The bare Phi Model outputting raw hidden-states without any specific head on top.",
711
+ PHI_START_DOCSTRING,
712
+ )
713
+ class PhiPreTrainedModel(PreTrainedModel):
714
+ config_class = PhiConfig
715
+ base_model_prefix = "model"
716
+ supports_gradient_checkpointing = True
717
+ _no_split_modules = ["PhiDecoderLayer"]
718
+ _skip_keys_device_placement = "past_key_values"
719
+ _supports_flash_attn_2 = True
720
+ _supports_cache_class = True
721
+
722
+ def _init_weights(self, module):
723
+ std = self.config.initializer_range
724
+ if isinstance(module, nn.Linear):
725
+ module.weight.data.normal_(mean=0.0, std=std)
726
+ if module.bias is not None:
727
+ module.bias.data.zero_()
728
+ elif isinstance(module, nn.Embedding):
729
+ module.weight.data.normal_(mean=0.0, std=std)
730
+ if module.padding_idx is not None:
731
+ module.weight.data[module.padding_idx].zero_()
732
+
733
+
734
+ PHI_INPUTS_DOCSTRING = r"""
735
+ Args:
736
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
737
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
738
+ it.
739
+
740
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
741
+ [`PreTrainedTokenizer.__call__`] for details.
742
+
743
+ [What are input IDs?](../glossary#input-ids)
744
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
745
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
746
+
747
+ - 1 for tokens that are **not masked**,
748
+ - 0 for tokens that are **masked**.
749
+
750
+ [What are attention masks?](../glossary#attention-mask)
751
+
752
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
753
+ [`PreTrainedTokenizer.__call__`] for details.
754
+
755
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
756
+ `past_key_values`).
757
+
758
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
759
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
760
+ information on the default strategy.
761
+
762
+ - 1 indicates the head is **not masked**,
763
+ - 0 indicates the head is **masked**.
764
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
765
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
766
+ config.n_positions - 1]`.
767
+
768
+ [What are position IDs?](../glossary#position-ids)
769
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
770
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
771
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
772
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
773
+
774
+ Two formats are allowed:
775
+ - a [`~cache_utils.Cache`] instance;
776
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
777
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
778
+ cache format.
779
+
780
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
781
+ legacy cache format will be returned.
782
+
783
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
784
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
785
+ of shape `(batch_size, sequence_length)`.
786
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
787
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
788
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
789
+ model's internal embedding lookup matrix.
790
+ use_cache (`bool`, *optional*):
791
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
792
+ `past_key_values`).
793
+ output_attentions (`bool`, *optional*):
794
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
795
+ tensors for more detail.
796
+ output_hidden_states (`bool`, *optional*):
797
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
798
+ more detail.
799
+ return_dict (`bool`, *optional*):
800
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
801
+ """
802
+
803
+
804
+ @add_start_docstrings(
805
+ "The bare Phi Model outputting raw hidden-states without any specific head on top.",
806
+ PHI_START_DOCSTRING,
807
+ )
808
+ class PhiModel(PhiPreTrainedModel):
809
+ """
810
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
811
+
812
+ Args:
813
+ config: PhiConfig
814
+ """
815
+
816
+ def __init__(self, config: PhiConfig):
817
+ super().__init__(config)
818
+ self.padding_idx = config.pad_token_id
819
+ self.vocab_size = config.vocab_size
820
+
821
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
822
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
823
+ self.layers = nn.ModuleList(
824
+ [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
825
+ )
826
+ self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
827
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
828
+
829
+ self.gradient_checkpointing = False
830
+ # Initialize weights and apply final processing
831
+ self.post_init()
832
+
833
+ def get_input_embeddings(self):
834
+ return self.embed_tokens
835
+
836
+ def set_input_embeddings(self, value):
837
+ self.embed_tokens = value
838
+
839
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
840
+ def forward(
841
+ self,
842
+ input_ids: torch.LongTensor = None,
843
+ attention_mask: Optional[torch.Tensor] = None,
844
+ position_ids: Optional[torch.LongTensor] = None,
845
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
846
+ inputs_embeds: Optional[torch.FloatTensor] = None,
847
+ use_cache: Optional[bool] = None,
848
+ output_attentions: Optional[bool] = None,
849
+ output_hidden_states: Optional[bool] = None,
850
+ return_dict: Optional[bool] = None,
851
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
852
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
853
+ output_hidden_states = (
854
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
855
+ )
856
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
857
+
858
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
859
+
860
+ # retrieve input_ids and inputs_embeds
861
+ if input_ids is not None and inputs_embeds is not None:
862
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
863
+ elif input_ids is not None:
864
+ batch_size, seq_length = input_ids.shape[:2]
865
+ elif inputs_embeds is not None:
866
+ batch_size, seq_length = inputs_embeds.shape[:2]
867
+ else:
868
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
869
+
870
+ past_key_values_length = 0
871
+
872
+ if self.gradient_checkpointing and self.training:
873
+ if use_cache:
874
+ logger.warning_once(
875
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
876
+ )
877
+ use_cache = False
878
+
879
+ if use_cache:
880
+ use_legacy_cache = not isinstance(past_key_values, Cache)
881
+ if use_legacy_cache:
882
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
883
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
884
+
885
+ if position_ids is None:
886
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
887
+ position_ids = torch.arange(
888
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
889
+ )
890
+ position_ids = position_ids.unsqueeze(0)
891
+
892
+ if inputs_embeds is None:
893
+ inputs_embeds = self.embed_tokens(input_ids)
894
+
895
+ inputs_embeds = self.embed_dropout(inputs_embeds)
896
+
897
+ # Attention mask.
898
+ if self._use_flash_attention_2:
899
+ # 2d mask is passed through the layers
900
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
901
+ else:
902
+ # 4d mask is passed through the layers
903
+ attention_mask = _prepare_4d_causal_attention_mask(
904
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
905
+ )
906
+
907
+ hidden_states = inputs_embeds
908
+
909
+ # decoder layers
910
+ all_hidden_states = () if output_hidden_states else None
911
+ all_self_attns = () if output_attentions else None
912
+ next_decoder_cache = None
913
+
914
+ for decoder_layer in self.layers:
915
+ if output_hidden_states:
916
+ all_hidden_states += (hidden_states,)
917
+
918
+ if self.gradient_checkpointing and self.training:
919
+ layer_outputs = self._gradient_checkpointing_func(
920
+ decoder_layer.__call__,
921
+ hidden_states,
922
+ attention_mask,
923
+ position_ids,
924
+ past_key_values,
925
+ output_attentions,
926
+ )
927
+ else:
928
+ layer_outputs = decoder_layer(
929
+ hidden_states,
930
+ attention_mask=attention_mask,
931
+ position_ids=position_ids,
932
+ past_key_value=past_key_values,
933
+ output_attentions=output_attentions,
934
+ use_cache=use_cache,
935
+ )
936
+
937
+ hidden_states = layer_outputs[0]
938
+
939
+ if use_cache:
940
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
941
+
942
+ if output_attentions:
943
+ all_self_attns += (layer_outputs[1],)
944
+
945
+ hidden_states = self.final_layernorm(hidden_states)
946
+
947
+ # add hidden states from the last decoder layer
948
+ if output_hidden_states:
949
+ all_hidden_states += (hidden_states,)
950
+
951
+ next_cache = None
952
+ if use_cache:
953
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
954
+ if not return_dict:
955
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
956
+ return BaseModelOutputWithPast(
957
+ last_hidden_state=hidden_states,
958
+ past_key_values=next_cache,
959
+ hidden_states=all_hidden_states,
960
+ attentions=all_self_attns,
961
+ )
962
+
963
+
964
+ class PhiForCausalLM(PhiPreTrainedModel):
965
+ _tied_weights_keys = ["lm_head.weight"]
966
+
967
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True
968
+ def __init__(self, config):
969
+ super().__init__(config)
970
+ self.model = PhiModel(config)
971
+ self.vocab_size = config.vocab_size
972
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
973
+
974
+ # Initialize weights and apply final processing
975
+ self.post_init()
976
+
977
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
978
+ def get_input_embeddings(self):
979
+ return self.model.embed_tokens
980
+
981
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
982
+ def set_input_embeddings(self, value):
983
+ self.model.embed_tokens = value
984
+
985
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
986
+ def get_output_embeddings(self):
987
+ return self.lm_head
988
+
989
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
990
+ def set_output_embeddings(self, new_embeddings):
991
+ self.lm_head = new_embeddings
992
+
993
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
994
+ def set_decoder(self, decoder):
995
+ self.model = decoder
996
+
997
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
998
+ def get_decoder(self):
999
+ return self.model
1000
+
1001
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
1002
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1003
+ def forward(
1004
+ self,
1005
+ input_ids: torch.LongTensor = None,
1006
+ attention_mask: Optional[torch.Tensor] = None,
1007
+ position_ids: Optional[torch.LongTensor] = None,
1008
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1009
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1010
+ labels: Optional[torch.LongTensor] = None,
1011
+ use_cache: Optional[bool] = None,
1012
+ output_attentions: Optional[bool] = None,
1013
+ output_hidden_states: Optional[bool] = None,
1014
+ return_dict: Optional[bool] = None,
1015
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1016
+ r"""
1017
+ Args:
1018
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1019
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1020
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1021
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1022
+
1023
+ Returns:
1024
+
1025
+ Example:
1026
+
1027
+ ```python
1028
+ >>> from transformers import AutoTokenizer, PhiForCausalLM
1029
+
1030
+ >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1")
1031
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
1032
+
1033
+ >>> prompt = "This is an example script ."
1034
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1035
+
1036
+ >>> # Generate
1037
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1038
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1039
+ 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
1040
+ ```"""
1041
+
1042
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1043
+ output_hidden_states = (
1044
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1045
+ )
1046
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1047
+
1048
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1049
+ outputs = self.model(
1050
+ input_ids=input_ids,
1051
+ attention_mask=attention_mask,
1052
+ position_ids=position_ids,
1053
+ past_key_values=past_key_values,
1054
+ inputs_embeds=inputs_embeds,
1055
+ use_cache=use_cache,
1056
+ output_attentions=output_attentions,
1057
+ output_hidden_states=output_hidden_states,
1058
+ return_dict=return_dict,
1059
+ )
1060
+
1061
+ hidden_states = outputs[0]
1062
+ logits = self.lm_head(hidden_states)
1063
+ logits = logits.float()
1064
+
1065
+ loss = None
1066
+ if labels is not None:
1067
+ # Shift so that tokens < n predict n
1068
+ shift_logits = logits[..., :-1, :].contiguous()
1069
+ shift_labels = labels[..., 1:].contiguous()
1070
+ # Flatten the tokens
1071
+ loss_fct = CrossEntropyLoss()
1072
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1073
+ shift_labels = shift_labels.view(-1)
1074
+ # Enable model parallelism
1075
+ shift_labels = shift_labels.to(shift_logits.device)
1076
+ loss = loss_fct(shift_logits, shift_labels)
1077
+
1078
+ if not return_dict:
1079
+ output = (logits,) + outputs[1:]
1080
+ return (loss,) + output if loss is not None else output
1081
+
1082
+ return CausalLMOutputWithPast(
1083
+ loss=loss,
1084
+ logits=logits,
1085
+ past_key_values=outputs.past_key_values,
1086
+ hidden_states=outputs.hidden_states,
1087
+ attentions=outputs.attentions,
1088
+ )
1089
+
1090
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
1091
+ def prepare_inputs_for_generation(
1092
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1093
+ ):
1094
+ if past_key_values is not None:
1095
+ if isinstance(past_key_values, Cache):
1096
+ cache_length = past_key_values.get_seq_length()
1097
+ past_length = past_key_values.seen_tokens
1098
+ max_cache_length = past_key_values.get_max_length()
1099
+ else:
1100
+ cache_length = past_length = past_key_values[0][0].shape[2]
1101
+ max_cache_length = None
1102
+
1103
+ # Keep only the unprocessed tokens:
1104
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1105
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1106
+ # input)
1107
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1108
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1109
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1110
+ # input_ids based on the past_length.
1111
+ elif past_length < input_ids.shape[1]:
1112
+ input_ids = input_ids[:, past_length:]
1113
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1114
+
1115
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1116
+ if (
1117
+ max_cache_length is not None
1118
+ and attention_mask is not None
1119
+ and cache_length + input_ids.shape[1] > max_cache_length
1120
+ ):
1121
+ attention_mask = attention_mask[:, -max_cache_length:]
1122
+
1123
+ position_ids = kwargs.get("position_ids", None)
1124
+ if attention_mask is not None and position_ids is None:
1125
+ # create position_ids on the fly for batch generation
1126
+ position_ids = attention_mask.long().cumsum(-1) - 1
1127
+ position_ids.masked_fill_(attention_mask == 0, 1)
1128
+ if past_key_values:
1129
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1130
+
1131
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1132
+ if inputs_embeds is not None and past_key_values is None:
1133
+ model_inputs = {"inputs_embeds": inputs_embeds}
1134
+ else:
1135
+ model_inputs = {"input_ids": input_ids}
1136
+
1137
+ model_inputs.update(
1138
+ {
1139
+ "position_ids": position_ids,
1140
+ "past_key_values": past_key_values,
1141
+ "use_cache": kwargs.get("use_cache"),
1142
+ "attention_mask": attention_mask,
1143
+ }
1144
+ )
1145
+ return model_inputs
1146
+
1147
+ @staticmethod
1148
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1149
+ def _reorder_cache(past_key_values, beam_idx):
1150
+ reordered_past = ()
1151
+ for layer_past in past_key_values:
1152
+ reordered_past += (
1153
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1154
+ )
1155
+ return reordered_past
1156
+
1157
+
1158
+ @add_start_docstrings(
1159
+ """
1160
+ The PhiModel with a sequence classification head on top (linear layer).
1161
+
1162
+ [`PhiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1163
+ (e.g. GPT-2) do.
1164
+
1165
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1166
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1167
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1168
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1169
+ each row of the batch).
1170
+ """,
1171
+ PHI_START_DOCSTRING,
1172
+ )
1173
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PHI,Llama->Phi with self.transformer->self.model, transformer_outputs->model_outputs
1174
+ class PhiForSequenceClassification(PhiPreTrainedModel):
1175
+ def __init__(self, config):
1176
+ super().__init__(config)
1177
+ self.num_labels = config.num_labels
1178
+ self.model = PhiModel(config)
1179
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1180
+
1181
+ # Initialize weights and apply final processing
1182
+ self.post_init()
1183
+
1184
+ def get_input_embeddings(self):
1185
+ return self.model.embed_tokens
1186
+
1187
+ def set_input_embeddings(self, value):
1188
+ self.model.embed_tokens = value
1189
+
1190
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
1191
+ def forward(
1192
+ self,
1193
+ input_ids: torch.LongTensor = None,
1194
+ attention_mask: Optional[torch.Tensor] = None,
1195
+ position_ids: Optional[torch.LongTensor] = None,
1196
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1197
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1198
+ labels: Optional[torch.LongTensor] = None,
1199
+ use_cache: Optional[bool] = None,
1200
+ output_attentions: Optional[bool] = None,
1201
+ output_hidden_states: Optional[bool] = None,
1202
+ return_dict: Optional[bool] = None,
1203
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1204
+ r"""
1205
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1206
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1207
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1208
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1209
+ """
1210
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1211
+
1212
+ model_outputs = self.model(
1213
+ input_ids,
1214
+ attention_mask=attention_mask,
1215
+ position_ids=position_ids,
1216
+ past_key_values=past_key_values,
1217
+ inputs_embeds=inputs_embeds,
1218
+ use_cache=use_cache,
1219
+ output_attentions=output_attentions,
1220
+ output_hidden_states=output_hidden_states,
1221
+ return_dict=return_dict,
1222
+ )
1223
+ hidden_states = model_outputs[0]
1224
+ logits = self.score(hidden_states)
1225
+
1226
+ if input_ids is not None:
1227
+ batch_size = input_ids.shape[0]
1228
+ else:
1229
+ batch_size = inputs_embeds.shape[0]
1230
+
1231
+ if self.config.pad_token_id is None and batch_size != 1:
1232
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1233
+ if self.config.pad_token_id is None:
1234
+ sequence_lengths = -1
1235
+ else:
1236
+ if input_ids is not None:
1237
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1238
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1239
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1240
+ sequence_lengths = sequence_lengths.to(logits.device)
1241
+ else:
1242
+ sequence_lengths = -1
1243
+
1244
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1245
+
1246
+ loss = None
1247
+ if labels is not None:
1248
+ labels = labels.to(logits.device)
1249
+ if self.config.problem_type is None:
1250
+ if self.num_labels == 1:
1251
+ self.config.problem_type = "regression"
1252
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1253
+ self.config.problem_type = "single_label_classification"
1254
+ else:
1255
+ self.config.problem_type = "multi_label_classification"
1256
+
1257
+ if self.config.problem_type == "regression":
1258
+ loss_fct = MSELoss()
1259
+ if self.num_labels == 1:
1260
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1261
+ else:
1262
+ loss = loss_fct(pooled_logits, labels)
1263
+ elif self.config.problem_type == "single_label_classification":
1264
+ loss_fct = CrossEntropyLoss()
1265
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1266
+ elif self.config.problem_type == "multi_label_classification":
1267
+ loss_fct = BCEWithLogitsLoss()
1268
+ loss = loss_fct(pooled_logits, labels)
1269
+ if not return_dict:
1270
+ output = (pooled_logits,) + model_outputs[1:]
1271
+ return ((loss,) + output) if loss is not None else output
1272
+
1273
+ return SequenceClassifierOutputWithPast(
1274
+ loss=loss,
1275
+ logits=pooled_logits,
1276
+ past_key_values=model_outputs.past_key_values,
1277
+ hidden_states=model_outputs.hidden_states,
1278
+ attentions=model_outputs.attentions,
1279
+ )
1280
+
1281
+
1282
+ @add_start_docstrings(
1283
+ """
1284
+ PhiModel with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1285
+ Named-Entity-Recognition (NER) tasks.
1286
+ """,
1287
+ PHI_START_DOCSTRING,
1288
+ )
1289
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with MPT->PHI,Mpt->Phi,self.transformer->self.model,transformer_outputs->model_outputs
1290
+ class PhiForTokenClassification(PhiPreTrainedModel):
1291
+ def __init__(self, config: PhiConfig):
1292
+ super().__init__(config)
1293
+ self.num_labels = config.num_labels
1294
+
1295
+ self.model = PhiModel(config)
1296
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1297
+ classifier_dropout = config.classifier_dropout
1298
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1299
+ classifier_dropout = config.hidden_dropout
1300
+ else:
1301
+ classifier_dropout = 0.1
1302
+ self.dropout = nn.Dropout(classifier_dropout)
1303
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1304
+
1305
+ # Initialize weights and apply final processing
1306
+ self.post_init()
1307
+
1308
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
1309
+ @add_code_sample_docstrings(
1310
+ checkpoint=_CHECKPOINT_FOR_DOC,
1311
+ output_type=TokenClassifierOutput,
1312
+ config_class=_CONFIG_FOR_DOC,
1313
+ )
1314
+ def forward(
1315
+ self,
1316
+ input_ids: Optional[torch.LongTensor] = None,
1317
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1318
+ attention_mask: Optional[torch.Tensor] = None,
1319
+ inputs_embeds: Optional[torch.Tensor] = None,
1320
+ labels: Optional[torch.Tensor] = None,
1321
+ use_cache: Optional[bool] = None,
1322
+ output_attentions: Optional[bool] = None,
1323
+ output_hidden_states: Optional[bool] = None,
1324
+ return_dict: Optional[bool] = None,
1325
+ **deprecated_arguments,
1326
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1327
+ r"""
1328
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1329
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1330
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1331
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1332
+ """
1333
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1334
+
1335
+ model_outputs = self.model(
1336
+ input_ids,
1337
+ past_key_values=past_key_values,
1338
+ attention_mask=attention_mask,
1339
+ inputs_embeds=inputs_embeds,
1340
+ use_cache=use_cache,
1341
+ output_attentions=output_attentions,
1342
+ output_hidden_states=output_hidden_states,
1343
+ return_dict=return_dict,
1344
+ )
1345
+
1346
+ hidden_states = model_outputs[0]
1347
+ hidden_states = self.dropout(hidden_states)
1348
+ logits = self.classifier(hidden_states)
1349
+
1350
+ loss = None
1351
+ if labels is not None:
1352
+ # move labels to correct device to enable model parallelism
1353
+ labels = labels.to(logits.device)
1354
+ batch_size, seq_length = labels.shape
1355
+ loss_fct = CrossEntropyLoss()
1356
+ loss = loss_fct(
1357
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1358
+ )
1359
+
1360
+ if not return_dict:
1361
+ output = (logits,) + model_outputs[2:]
1362
+ return ((loss,) + output) if loss is not None else output
1363
+
1364
+ return TokenClassifierOutput(
1365
+ loss=loss,
1366
+ logits=logits,
1367
+ hidden_states=model_outputs.hidden_states,
1368
+ attentions=model_outputs.attentions,
1369
+ )
plots.png ADDED
smash_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "api_key": null,
3
+ "verify_url": "http://johnrachwan.pythonanywhere.com",
4
+ "smash_config": {
5
+ "pruners": "None",
6
+ "factorizers": "None",
7
+ "quantizers": "['llm-int8']",
8
+ "compilers": "None",
9
+ "task": "text_text_generation",
10
+ "device": "cuda",
11
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsi7df7sw5",
12
+ "batch_size": 1,
13
+ "model_name": "microsoft/phi-1",
14
+ "pruning_ratio": 0.0,
15
+ "n_quantization_bits": 8,
16
+ "output_deviation": 0.005,
17
+ "max_batch_size": 1,
18
+ "qtype_weight": "torch.qint8",
19
+ "qtype_activation": "torch.quint8",
20
+ "qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
21
+ "qscheme": "torch.per_tensor_symmetric",
22
+ "qconfig": "x86",
23
+ "group_size": 128,
24
+ "damp_percent": 0.1,
25
+ "save_load_fn": "bitsandbytes"
26
+ }
27
+ }