Upload train_model.py
Browse files- train_model.py +103 -0
train_model.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from tensor_network import FourDimensionalTransformer # Adjust based on your model's location
|
8 |
+
|
9 |
+
# List of dataset identifiers
|
10 |
+
dataset_ids = [
|
11 |
+
"prithivMLmods/Deepthink-Reasoning",
|
12 |
+
"ewok-core/ewok-core-1.0",
|
13 |
+
"MuskumPillerum/General-Knowledge",
|
14 |
+
"fblgit/tree-of-knowledge",
|
15 |
+
"CohereForAI/aya_dataset",
|
16 |
+
"AtlasUnified/Atlas-Reasoning",
|
17 |
+
"livebench/reasoning",
|
18 |
+
"SkunkworksAI/reasoning-0.01",
|
19 |
+
"KingNish/reasoning-base-20k",
|
20 |
+
"RLHFlow/HH-RLHF-Helpful-standard",
|
21 |
+
"MBZUAI/ArabicMMLU"
|
22 |
+
]
|
23 |
+
|
24 |
+
# Load datasets
|
25 |
+
datasets = [load_dataset(dataset_id) for dataset_id in dataset_ids]
|
26 |
+
|
27 |
+
# Initialize tokenizer
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Replace with your model's tokenizer
|
29 |
+
|
30 |
+
# Tokenize datasets
|
31 |
+
def tokenize_function(examples):
|
32 |
+
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
|
33 |
+
|
34 |
+
tokenized_datasets = [dataset.map(tokenize_function, batched=True) for dataset in datasets]
|
35 |
+
|
36 |
+
|
37 |
+
# Prepare DataLoader
|
38 |
+
def prepare_dataloader(dataset, batch_size=32):
|
39 |
+
dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
40 |
+
return DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
41 |
+
|
42 |
+
train_dataloaders = [prepare_dataloader(dataset['train']) for dataset in tokenized_datasets]
|
43 |
+
val_dataloaders = [prepare_dataloader(dataset['validation']) for dataset in tokenized_datasets]
|
44 |
+
|
45 |
+
|
46 |
+
# Model setup
|
47 |
+
model = FourDimensionalTransformer(
|
48 |
+
num_layers=16,
|
49 |
+
embed_dim=7,
|
50 |
+
num_heads=1,
|
51 |
+
num_extra_tokens=16,
|
52 |
+
num_classes=10 # Adjust based on your specific task
|
53 |
+
)
|
54 |
+
|
55 |
+
# Loss function and optimizer
|
56 |
+
criterion = nn.CrossEntropyLoss()
|
57 |
+
optimizer = optim.Adam(model.parameters(), lr=1e-4) # Using Adam optimizer with a learning rate of 1e-4
|
58 |
+
|
59 |
+
# Training loop
|
60 |
+
def train(model, train_dataloaders, val_dataloaders, num_epochs=10):
|
61 |
+
for epoch in range(num_epochs):
|
62 |
+
model.train()
|
63 |
+
total_loss = 0
|
64 |
+
for dataloader in train_dataloaders:
|
65 |
+
for batch in dataloader:
|
66 |
+
input_ids = batch['input_ids']
|
67 |
+
attention_mask = batch['attention_mask']
|
68 |
+
labels = batch['label']
|
69 |
+
|
70 |
+
optimizer.zero_grad()
|
71 |
+
outputs = model(input_ids, attention_mask)
|
72 |
+
loss = criterion(outputs, labels)
|
73 |
+
loss.backward()
|
74 |
+
optimizer.step()
|
75 |
+
|
76 |
+
total_loss += loss.item()
|
77 |
+
|
78 |
+
avg_loss = total_loss / len(dataloader)
|
79 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}')
|
80 |
+
|
81 |
+
# Validation
|
82 |
+
model.eval()
|
83 |
+
total_correct = 0
|
84 |
+
with torch.no_grad():
|
85 |
+
for dataloader in val_dataloaders:
|
86 |
+
for batch in dataloader:
|
87 |
+
input_ids = batch['input_ids']
|
88 |
+
attention_mask = batch['attention_mask']
|
89 |
+
labels = batch['label']
|
90 |
+
|
91 |
+
outputs = model(input_ids, attention_mask)
|
92 |
+
_, predicted = torch.max(outputs, 1)
|
93 |
+
total_correct += (predicted == labels).sum().item()
|
94 |
+
|
95 |
+
accuracy = total_correct / len(dataloader.dataset)
|
96 |
+
print(f'Validation Accuracy: {accuracy:.4f}')
|
97 |
+
|
98 |
+
# Save the trained model
|
99 |
+
torch.save(model.state_dict(), 'trained_model.pth')
|
100 |
+
|
101 |
+
|
102 |
+
# Train the model
|
103 |
+
train(model, train_dataloaders, val_dataloaders)
|