File size: 3,506 Bytes
0ae85e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from datasets import load_dataset
from transformers import AutoTokenizer
from tensor_network import FourDimensionalTransformer  # Adjust based on your model's location

# List of dataset identifiers
dataset_ids = [
    "prithivMLmods/Deepthink-Reasoning",
    "ewok-core/ewok-core-1.0",
    "MuskumPillerum/General-Knowledge",
    "fblgit/tree-of-knowledge",
    "CohereForAI/aya_dataset",
    "AtlasUnified/Atlas-Reasoning",
    "livebench/reasoning",
    "SkunkworksAI/reasoning-0.01",
    "KingNish/reasoning-base-20k",
    "RLHFlow/HH-RLHF-Helpful-standard",
    "yitingxie/rlhf-reward-datasets"
]

# Load datasets
datasets = [load_dataset(dataset_id) for dataset_id in dataset_ids]

# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')  # Replace with your model's tokenizer

# Tokenize datasets
def tokenize_function(examples):
    return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)

tokenized_datasets = [dataset.map(tokenize_function, batched=True) for dataset in datasets]


# Prepare DataLoader
def prepare_dataloader(dataset, batch_size=32):
    dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
    return DataLoader(dataset, batch_size=batch_size, shuffle=True)

train_dataloaders = [prepare_dataloader(dataset['train']) for dataset in tokenized_datasets]
val_dataloaders = [prepare_dataloader(dataset['validation']) for dataset in tokenized_datasets]


# Model setup
model = FourDimensionalTransformer(
    num_layers=16,
    embed_dim=7,
    num_heads=1,
    num_extra_tokens=16,
    num_classes=10  # Adjust based on your specific task
)

# Loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)  # Using Adam optimizer with a learning rate of 1e-4

# Training loop
def train(model, train_dataloaders, val_dataloaders, num_epochs=10):
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for dataloader in train_dataloaders:
            for batch in dataloader:
                input_ids = batch['input_ids']
                attention_mask = batch['attention_mask']
                labels = batch['label']

                optimizer.zero_grad()
                outputs = model(input_ids, attention_mask)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()

                total_loss += loss.item()

        avg_loss = total_loss / len(dataloader)
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}')

        # Validation
        model.eval()
        total_correct = 0
        with torch.no_grad():
            for dataloader in val_dataloaders:
                for batch in dataloader:
                    input_ids = batch['input_ids']
                    attention_mask = batch['attention_mask']
                    labels = batch['label']

                    outputs = model(input_ids, attention_mask)
                    _, predicted = torch.max(outputs, 1)
                    total_correct += (predicted == labels).sum().item()

        accuracy = total_correct / len(dataloader.dataset)
        print(f'Validation Accuracy: {accuracy:.4f}')

    # Save the trained model
    torch.save(model.state_dict(), 'trained_model.pth')


# Train the model
train(model, train_dataloaders, val_dataloaders)