|
import math |
|
import sys |
|
from typing import Iterable |
|
|
|
import torch |
|
import torch.nn as nn |
|
import accelerate |
|
from .utils import MetricLogger, SmoothedValue |
|
|
|
|
|
def update_ema_for_dit(model, model_ema, accelerator, decay): |
|
"""Apply exponential moving average update. |
|
|
|
The weights are updated in-place as follow: |
|
w_ema = w_ema * decay + (1 - decay) * w |
|
Args: |
|
model: active model that is being optimized |
|
model_ema: running average model |
|
decay: exponential decay parameter |
|
""" |
|
with torch.no_grad(): |
|
msd = accelerator.get_state_dict(model) |
|
for k, ema_v in model_ema.state_dict().items(): |
|
if k in msd: |
|
model_v = msd[k].detach().to(ema_v.device, dtype=ema_v.dtype) |
|
ema_v.copy_(ema_v * decay + (1.0 - decay) * model_v) |
|
|
|
|
|
def get_decay(optimization_step: int, ema_decay: float) -> float: |
|
""" |
|
Compute the decay factor for the exponential moving average. |
|
""" |
|
step = max(0, optimization_step - 1) |
|
|
|
if step <= 0: |
|
return 0.0 |
|
|
|
cur_decay_value = (1 + step) / (10 + step) |
|
cur_decay_value = min(cur_decay_value, ema_decay) |
|
cur_decay_value = max(cur_decay_value, 0.0) |
|
|
|
return cur_decay_value |
|
|
|
|
|
def train_one_epoch_with_fsdp( |
|
runner, |
|
model_ema: torch.nn.Module, |
|
accelerator: accelerate.Accelerator, |
|
model_dtype: str, |
|
data_loader: Iterable, |
|
optimizer: torch.optim.Optimizer, |
|
lr_schedule_values, |
|
device: torch.device, |
|
epoch: int, |
|
clip_grad: float = 1.0, |
|
start_steps=None, |
|
args=None, |
|
print_freq=20, |
|
iters_per_epoch=2000, |
|
ema_decay=0.9999, |
|
use_temporal_pyramid=True, |
|
): |
|
runner.dit.train() |
|
metric_logger = MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
metric_logger.add_meter('min_lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
header = 'Epoch: [{}]'.format(epoch) |
|
train_loss = 0.0 |
|
|
|
print("Start training epoch {}, {} iters per inner epoch. Training dtype {}".format(epoch, iters_per_epoch, model_dtype)) |
|
|
|
for step in metric_logger.log_every(range(iters_per_epoch), print_freq, header): |
|
if step >= iters_per_epoch: |
|
break |
|
|
|
if lr_schedule_values is not None: |
|
for i, param_group in enumerate(optimizer.param_groups): |
|
param_group["lr"] = lr_schedule_values[start_steps] * param_group.get("lr_scale", 1.0) |
|
|
|
for _ in range(args.gradient_accumulation_steps): |
|
|
|
with accelerator.accumulate(runner.dit): |
|
|
|
samples = next(data_loader) |
|
video = samples['video'].to(accelerator.device) |
|
text = samples['text'] |
|
identifier = samples['identifier'] |
|
|
|
|
|
loss, log_loss = runner(video, text, identifier, |
|
use_temporal_pyramid=use_temporal_pyramid, accelerator=accelerator) |
|
|
|
|
|
loss_value = loss.item() |
|
if not math.isfinite(loss_value): |
|
print("Loss is {}, stopping training".format(loss_value), force=True) |
|
sys.exit(1) |
|
|
|
avg_loss = accelerator.gather(loss.repeat(args.batch_size)).mean() |
|
|
|
train_loss += avg_loss.item() / args.gradient_accumulation_steps |
|
|
|
accelerator.backward(loss) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
params_to_clip = runner.dit.parameters() |
|
grad_norm = accelerator.clip_grad_norm_(params_to_clip, clip_grad) |
|
|
|
|
|
if train_loss >= 2.0: |
|
print(f"The ERROR data sample, finding extreme high loss {train_loss}, skip updating the parameters", force=True) |
|
|
|
optimizer.zero_grad() |
|
train_loss = 0.001 |
|
else: |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
if accelerator.sync_gradients: |
|
|
|
if model_ema is not None and start_steps % 100 == 0: |
|
|
|
cur_ema_decay = ema_decay |
|
update_ema_for_dit(runner.dit, model_ema, accelerator, decay=cur_ema_decay) |
|
|
|
start_steps += 1 |
|
|
|
|
|
accelerator.log({"train_loss": train_loss}, step=start_steps) |
|
metric_logger.update(loss=train_loss) |
|
|
|
train_loss = 0.0 |
|
|
|
min_lr = 10. |
|
max_lr = 0. |
|
for group in optimizer.param_groups: |
|
min_lr = min(min_lr, group["lr"]) |
|
max_lr = max(max_lr, group["lr"]) |
|
|
|
metric_logger.update(lr=max_lr) |
|
metric_logger.update(min_lr=min_lr) |
|
weight_decay_value = None |
|
for group in optimizer.param_groups: |
|
if group["weight_decay"] > 0: |
|
weight_decay_value = group["weight_decay"] |
|
metric_logger.update(weight_decay=weight_decay_value) |
|
metric_logger.update(grad_norm=grad_norm) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |