|
import os |
|
import sys |
|
import torch |
|
import argparse |
|
from PIL import Image |
|
from diffusers.utils import export_to_video |
|
|
|
|
|
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
PROJECT_ROOT = os.path.dirname(SCRIPT_DIR) |
|
if PROJECT_ROOT not in sys.path: |
|
sys.path.insert(0, PROJECT_ROOT) |
|
|
|
from pyramid_dit import PyramidDiTForVideoGeneration |
|
from trainer_misc import init_distributed_mode, init_sequence_parallel_group |
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser('Pytorch Multi-process Script', add_help=False) |
|
parser.add_argument('--model_name', default='pyramid_mmdit', type=str, help="The model name", choices=["pyramid_flux", "pyramid_mmdit"]) |
|
parser.add_argument('--model_dtype', default='bf16', type=str, help="The Model Dtype: bf16") |
|
parser.add_argument('--model_path', required=True, type=str, help='Path to the downloaded checkpoint directory') |
|
parser.add_argument('--variant', default='diffusion_transformer_768p', type=str) |
|
parser.add_argument('--task', default='t2v', type=str, choices=['i2v', 't2v']) |
|
parser.add_argument('--temp', default=16, type=int, help='The generated latent num, num_frames = temp * 8 + 1') |
|
parser.add_argument('--sp_group_size', default=2, type=int, help="The number of GPUs used for inference, should be 2 or 4") |
|
parser.add_argument('--sp_proc_num', default=-1, type=int, help="The number of processes used for video training, default=-1 means using all processes.") |
|
parser.add_argument('--prompt', type=str, required=True, help="Text prompt for video generation") |
|
parser.add_argument('--image_path', type=str, help="Path to the input image for image-to-video") |
|
parser.add_argument('--video_guidance_scale', type=float, default=5.0, help="Video guidance scale") |
|
parser.add_argument('--guidance_scale', type=float, default=9.0, help="Guidance scale for text-to-video") |
|
parser.add_argument('--resolution', type=str, default='768p', choices=['768p', '384p'], help="Model resolution") |
|
parser.add_argument('--output_path', type=str, required=True, help="Path to save the generated video") |
|
return parser.parse_args() |
|
|
|
def main(): |
|
args = get_args() |
|
|
|
|
|
init_distributed_mode(args) |
|
|
|
assert args.world_size == args.sp_group_size, "The sequence parallel size should match DDP world size" |
|
|
|
|
|
init_sequence_parallel_group(args) |
|
|
|
device = torch.device('cuda') |
|
rank = args.rank |
|
model_dtype = args.model_dtype |
|
|
|
if args.model_name == "pyramid_flux": |
|
assert args.variant != "diffusion_transformer_768p", "The pyramid_flux does not support high resolution now, \ |
|
we will release it after finishing training. You can modify the model_name to pyramid_mmdit to support 768p version generation" |
|
|
|
model = PyramidDiTForVideoGeneration( |
|
args.model_path, |
|
model_dtype, |
|
model_name=args.model_name, |
|
model_variant=args.variant, |
|
) |
|
|
|
model.vae.to(device) |
|
model.dit.to(device) |
|
model.text_encoder.to(device) |
|
model.vae.enable_tiling() |
|
|
|
if model_dtype == "bf16": |
|
torch_dtype = torch.bfloat16 |
|
elif model_dtype == "fp16": |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
|
|
if args.resolution == '768p': |
|
width = 1280 |
|
height = 768 |
|
else: |
|
width = 640 |
|
height = 384 |
|
|
|
try: |
|
if args.task == 't2v': |
|
prompt = args.prompt |
|
with torch.no_grad(), torch.cuda.amp.autocast(enabled=(model_dtype != 'fp32'), dtype=torch_dtype): |
|
frames = model.generate( |
|
prompt=prompt, |
|
num_inference_steps=[20, 20, 20], |
|
video_num_inference_steps=[10, 10, 10], |
|
height=height, |
|
width=width, |
|
temp=args.temp, |
|
guidance_scale=args.guidance_scale, |
|
video_guidance_scale=args.video_guidance_scale, |
|
output_type="pil", |
|
save_memory=True, |
|
cpu_offloading=False, |
|
inference_multigpu=True, |
|
) |
|
if rank == 0: |
|
export_to_video(frames, args.output_path, fps=24) |
|
|
|
elif args.task == 'i2v': |
|
if not args.image_path: |
|
raise ValueError("Image path is required for image-to-video task") |
|
image = Image.open(args.image_path).convert("RGB") |
|
image = image.resize((width, height)) |
|
|
|
prompt = args.prompt |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(enabled=(model_dtype != 'fp32'), dtype=torch_dtype): |
|
frames = model.generate_i2v( |
|
prompt=prompt, |
|
input_image=image, |
|
num_inference_steps=[10, 10, 10], |
|
temp=args.temp, |
|
video_guidance_scale=args.video_guidance_scale, |
|
output_type="pil", |
|
save_memory=True, |
|
cpu_offloading=False, |
|
inference_multigpu=True, |
|
) |
|
if rank == 0: |
|
export_to_video(frames, args.output_path, fps=24) |
|
|
|
except Exception as e: |
|
if rank == 0: |
|
print(f"[ERROR] Error during video generation: {e}") |
|
raise |
|
finally: |
|
torch.distributed.barrier() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|