|
import torch |
|
import torch.nn as nn |
|
import os |
|
|
|
from transformers import ( |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
T5EncoderModel, |
|
T5TokenizerFast, |
|
) |
|
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
|
|
class FluxTextEncoderWithMask(nn.Module): |
|
def __init__(self, model_path, torch_dtype): |
|
super().__init__() |
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(os.path.join(model_path, 'tokenizer'), torch_dtype=torch_dtype) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
) |
|
self.text_encoder = CLIPTextModel.from_pretrained(os.path.join(model_path, 'text_encoder'), torch_dtype=torch_dtype) |
|
|
|
|
|
self.tokenizer_2 = T5TokenizerFast.from_pretrained(os.path.join(model_path, 'tokenizer_2')) |
|
self.text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(model_path, 'text_encoder_2'), torch_dtype=torch_dtype) |
|
|
|
self._freeze() |
|
|
|
def _freeze(self): |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 128, |
|
device: Optional[torch.device] = None, |
|
): |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer_2( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
prompt_attention_mask = text_inputs.attention_mask |
|
prompt_attention_mask = prompt_attention_mask.to(device) |
|
|
|
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), attention_mask=prompt_attention_mask, output_hidden_states=False)[0] |
|
|
|
dtype = self.text_encoder_2.dtype |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) |
|
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
return prompt_embeds, prompt_attention_mask |
|
|
|
def _get_clip_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
): |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer_max_length, |
|
truncation=True, |
|
return_overflowing_tokens=False, |
|
return_length=False, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) |
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
return prompt_embeds |
|
|
|
def encode_prompt(self, |
|
prompt, |
|
num_images_per_prompt=1, |
|
device=None, |
|
): |
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
batch_size = len(prompt) |
|
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
) |
|
|
|
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( |
|
prompt=prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
) |
|
|
|
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds |
|
|
|
def forward(self, input_prompts, device): |
|
with torch.no_grad(): |
|
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.encode_prompt(input_prompts, 1, device=device) |
|
|
|
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds |