ProCreations commited on
Commit
f46e612
·
verified ·
1 Parent(s): 686783c

Rename tg.ggml to tg.py

Browse files
Files changed (2) hide show
  1. tg.ggml +0 -69
  2. tg.py +36 -0
tg.ggml DELETED
@@ -1,69 +0,0 @@
1
- // Model definition
2
- model MyModel {
3
- // Input features
4
- input text: string;
5
-
6
- // Tokenization layer
7
- tokenizer {
8
- type: SentencePiece;
9
- vocab_size: 256; // Adjust based on dataset
10
- }
11
-
12
- // Embedding layer
13
- embeddings {
14
- dim: 128;
15
- }
16
-
17
- // Encoder layers
18
- encoder {
19
- type: lstm;
20
- units: 128;
21
- num_layers: 2;
22
- dropout: 0.2; // Add dropout for regularization
23
- }
24
-
25
- // Decoder layers
26
- decoder {
27
- type: gru;
28
- units: 64;
29
- num_layers: 2;
30
- dropout: 0.1; // Add dropout for regularization
31
- }
32
-
33
- // Attention mechanism
34
- attention {
35
- type: scaled_dot_product;
36
- }
37
-
38
- // Output layer
39
- output {
40
- type: dense;
41
- units: vocab_size;
42
- }
43
-
44
- // Loss function
45
- loss {
46
- type: softmax_cross_entropy;
47
- }
48
-
49
- // Optimizer
50
- optimizer {
51
- type: adam;
52
- learning_rate: 0.001;
53
- }
54
- }
55
-
56
- // Training parameters (in train.json)
57
- {
58
- "data_path": "path/to/your/training_data.txt",
59
- "batch_size": 32,
60
- "epochs": 10,
61
- "use_scheduled_sampling": true, // Enable scheduled sampling
62
- "clip_gradients": 5.0, // Add gradient clipping to prevent exploding gradients
63
- "use_batch_norm": true // Enable batch normalization
64
- }
65
-
66
- // Inference parameters
67
- inference {
68
- // ... (Define input and output behavior)
69
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tg.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+
3
+ # Improved training corpus with more data and variety
4
+ corpus = """
5
+ The quick brown fox jumps over the lazy dog.
6
+ Machine learning is the study of algorithms that can learn from data.
7
+ Natural language processing is a subfield of artificial intelligence concerned with the interactions between computers and human language.
8
+ Deep learning is a class of machine learning algorithms that use multiple layers of artificial neural networks to learn from data.
9
+ """
10
+
11
+ # Tokenization and vectorization (one-hot encoding for simplicity)
12
+ tokens = corpus.split()
13
+ vocab_size = len(set(tokens))
14
+ token_vectors = tf.one_hot(tf.strings.lookup(tokens, tf.constant([0] * vocab_size)), vocab_size)
15
+
16
+ # Model architecture with embedding, LSTM layers, and dense output
17
+ model = tf.keras.Sequential([
18
+ tf.keras.layers.Embedding(vocab_size, 8), # Embedding layer
19
+ tf.keras.layers.LSTM(16, return_sequences=True), # Recurrent LSTM layer
20
+ tf.keras.layers.LSTM(16),
21
+ tf.keras.layers.Dense(vocab_size) # Output layer
22
+ ])
23
+
24
+ # Compile the model with categorical crossentropy loss and Adam optimizer
25
+ model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
26
+
27
+ # Train the model for a limited number of epochs (adjust as needed)
28
+ model.fit(token_vectors[:-1], token_vectors[1:], epochs=20)
29
+
30
+ # Generate text starting with "The"
31
+ prompt_vector = tf.one_hot(tf.constant([tokens.index("The")]), vocab_size)
32
+ for i in range(10):
33
+ prediction = model.predict(tf.expand_dims(prompt_vector, axis=0))
34
+ predicted_index = tf.argmax(prediction, axis=1).numpy()[0]
35
+ prompt_vector = tf.concat([prompt_vector, tf.one_hot([predicted_index], vocab_size)], axis=0)
36
+ print(tokens[predicted_index], end=" ")