Priyanship commited on
Commit
d0ebe82
·
verified ·
1 Parent(s): 7b73a2a

End of training

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: eval_cache_hinglish
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/priyanshipal/huggingface/runs/b43qqej3)
13
+ # eval_cache_hinglish
14
+
15
+ This model was trained from scratch on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - eval_loss: 1.3408
18
+ - eval_model_preparation_time: 0.0045
19
+ - eval_cer: 0.2775
20
+ - eval_wer: 0.4149
21
+ - eval_runtime: 141.9071
22
+ - eval_samples_per_second: 18.068
23
+ - eval_steps_per_second: 1.135
24
+ - step: 0
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0006
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 300
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - training_steps: 1000
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.43.1
58
+ - Pytorch 2.4.0
59
+ - Datasets 2.20.0
60
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_cer": 0.2775128370109635,
3
+ "eval_loss": 1.3408493995666504,
4
+ "eval_model_preparation_time": 0.0045,
5
+ "eval_runtime": 141.9071,
6
+ "eval_samples": 2564,
7
+ "eval_samples_per_second": 18.068,
8
+ "eval_steps_per_second": 1.135,
9
+ "eval_wer": 0.4148846278843029
10
+ }
config.json ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec_outputs/pd_warmup_500/s300_shuff100",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.3,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 256,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.3,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.2,
58
+ "hidden_dropout_prob": 0.1,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.0,
64
+ "mask_feature_length": 10,
65
+ "mask_feature_min_masks": 0,
66
+ "mask_feature_prob": 0.0,
67
+ "mask_time_length": 10,
68
+ "mask_time_min_masks": 2,
69
+ "mask_time_prob": 0.05,
70
+ "model_type": "wav2vec2",
71
+ "num_adapter_layers": 3,
72
+ "num_attention_heads": 16,
73
+ "num_codevector_groups": 2,
74
+ "num_codevectors_per_group": 320,
75
+ "num_conv_pos_embedding_groups": 16,
76
+ "num_conv_pos_embeddings": 128,
77
+ "num_feat_extract_layers": 7,
78
+ "num_hidden_layers": 24,
79
+ "num_negatives": 100,
80
+ "output_hidden_size": 1024,
81
+ "pad_token_id": 148,
82
+ "proj_codevector_dim": 256,
83
+ "tdnn_dilation": [
84
+ 1,
85
+ 2,
86
+ 3,
87
+ 1,
88
+ 1
89
+ ],
90
+ "tdnn_dim": [
91
+ 512,
92
+ 512,
93
+ 512,
94
+ 512,
95
+ 1500
96
+ ],
97
+ "tdnn_kernel": [
98
+ 5,
99
+ 3,
100
+ 3,
101
+ 1,
102
+ 1
103
+ ],
104
+ "torch_dtype": "float32",
105
+ "transformers_version": "4.43.1",
106
+ "use_weighted_layer_sum": false,
107
+ "vocab_size": 151,
108
+ "xvector_output_dim": 512
109
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_cer": 0.2775128370109635,
3
+ "eval_loss": 1.3408493995666504,
4
+ "eval_model_preparation_time": 0.0045,
5
+ "eval_runtime": 141.9071,
6
+ "eval_samples": 2564,
7
+ "eval_samples_per_second": 18.068,
8
+ "eval_steps_per_second": 1.135,
9
+ "eval_wer": 0.4148846278843029
10
+ }
evalonlyhinglish_indicwav2vec_MUCS_warmup2000_s300shuff500_2144487.out ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/161 [00:00<?, ?it/s]
1
  1%| | 2/161 [00:00<01:07, 2.36it/s]
2
  2%|▏ | 3/161 [00:01<01:28, 1.79it/s]
3
  2%|▏ | 4/161 [00:02<01:51, 1.40it/s]
4
  3%|▎ | 5/161 [00:03<02:02, 1.27it/s]
5
  4%|▎ | 6/161 [00:04<02:07, 1.22it/s]
6
  4%|▍ | 7/161 [00:05<02:37, 1.02s/it]
7
  5%|▍ | 8/161 [00:08<03:33, 1.40s/it]
8
  6%|▌ | 9/161 [00:09<03:53, 1.54s/it]
9
  6%|▌ | 10/161 [00:10<03:25, 1.36s/it]
10
  7%|▋ | 11/161 [00:11<02:56, 1.18s/it]
11
  7%|▋ | 12/161 [00:12<02:30, 1.01s/it]
12
  8%|▊ | 13/161 [00:13<02:23, 1.03it/s]
13
  9%|▊ | 14/161 [00:14<02:43, 1.11s/it]
14
  9%|▉ | 15/161 [00:16<03:00, 1.24s/it]
15
  10%|▉ | 16/161 [00:17<02:47, 1.16s/it]
16
  11%|█ | 17/161 [00:17<02:23, 1.00it/s]
17
  11%|█ | 18/161 [00:18<02:09, 1.11it/s]
18
  12%|█▏ | 19/161 [00:19<01:59, 1.19it/s]
19
  12%|█▏ | 20/161 [00:19<01:57, 1.20it/s]
20
  13%|█▎ | 21/161 [00:20<01:45, 1.32it/s]
21
  14%|█▎ | 22/161 [00:21<01:51, 1.25it/s]
22
  14%|█▍ | 23/161 [00:23<02:30, 1.09s/it]
23
  15%|█▍ | 24/161 [00:24<02:29, 1.09s/it]
24
  16%|█▌ | 25/161 [00:25<02:20, 1.03s/it]
25
  16%|█▌ | 26/161 [00:25<02:11, 1.03it/s]
26
  17%|█▋ | 27/161 [00:26<02:02, 1.10it/s]
27
  17%|█▋ | 28/161 [00:27<01:54, 1.16it/s]
28
  18%|█▊ | 29/161 [00:28<01:49, 1.20it/s]
29
  19%|█▊ | 30/161 [00:28<01:45, 1.24it/s]
30
  19%|█▉ | 31/161 [00:29<01:36, 1.34it/s]
31
  20%|█▉ | 32/161 [00:30<01:30, 1.42it/s]
32
  20%|██ | 33/161 [00:30<01:30, 1.42it/s]
33
  21%|██ | 34/161 [00:31<01:27, 1.46it/s]
34
  22%|██▏ | 35/161 [00:32<01:25, 1.48it/s]
35
  22%|██▏ | 36/161 [00:32<01:22, 1.51it/s]
36
  23%|██▎ | 37/161 [00:33<01:19, 1.55it/s]
37
  24%|██▎ | 38/161 [00:34<01:20, 1.52it/s]
38
  24%|██▍ | 39/161 [00:34<01:24, 1.44it/s]
39
  25%|██▍ | 40/161 [00:35<01:29, 1.36it/s]
40
  25%|██▌ | 41/161 [00:36<01:36, 1.24it/s]
41
  26%|██▌ | 42/161 [00:37<01:40, 1.18it/s]
42
  27%|██▋ | 43/161 [00:38<01:41, 1.16it/s]
43
  27%|██▋ | 44/161 [00:39<01:42, 1.15it/s]
44
  28%|██▊ | 45/161 [00:40<01:34, 1.23it/s]
45
  29%|██▊ | 46/161 [00:40<01:28, 1.30it/s]
46
  29%|██▉ | 47/161 [00:41<01:28, 1.29it/s]
47
  30%|██▉ | 48/161 [00:42<01:28, 1.27it/s]
48
  30%|███ | 49/161 [00:43<01:27, 1.28it/s]
49
  31%|███ | 50/161 [00:43<01:28, 1.26it/s]
50
  32%|███▏ | 51/161 [00:44<01:29, 1.23it/s]
51
  32%|███▏ | 52/161 [00:45<01:34, 1.15it/s]
52
  33%|███▎ | 53/161 [00:46<01:36, 1.12it/s]
53
  34%|███▎ | 54/161 [00:47<01:32, 1.16it/s]
54
  34%|███▍ | 55/161 [00:48<01:25, 1.24it/s]
55
  35%|███▍ | 56/161 [00:48<01:18, 1.33it/s]
56
  35%|███▌ | 57/161 [00:49<01:14, 1.40it/s]
57
  36%|███▌ | 58/161 [00:50<01:11, 1.45it/s]
58
  37%|███▋ | 59/161 [00:50<01:07, 1.51it/s]
59
  37%|███▋ | 60/161 [00:51<01:04, 1.57it/s]
60
  38%|███▊ | 61/161 [00:52<01:06, 1.50it/s]
61
  39%|███▊ | 62/161 [00:52<01:07, 1.47it/s]
62
  39%|███▉ | 63/161 [00:53<01:06, 1.47it/s]
63
  40%|███▉ | 64/161 [00:54<01:09, 1.39it/s]
64
  40%|████ | 65/161 [00:55<01:11, 1.35it/s]
65
  41%|████ | 66/161 [00:55<01:12, 1.31it/s]
66
  42%|████▏ | 67/161 [00:56<01:12, 1.29it/s]
67
  42%|████▏ | 68/161 [00:57<01:12, 1.28it/s]
68
  43%|████▎ | 69/161 [00:58<01:10, 1.30it/s]
69
  43%|████▎ | 70/161 [00:59<01:12, 1.26it/s]
70
  44%|████▍ | 71/161 [00:59<01:11, 1.25it/s]
71
  45%|████▍ | 72/161 [01:00<01:13, 1.20it/s]
72
  45%|████▌ | 73/161 [01:01<01:13, 1.20it/s]
73
  46%|████▌ | 74/161 [01:02<01:10, 1.23it/s]
74
  47%|████▋ | 75/161 [01:02<01:04, 1.34it/s]
75
  47%|████▋ | 76/161 [01:03<01:03, 1.33it/s]
76
  48%|████▊ | 77/161 [01:04<01:04, 1.30it/s]
77
  48%|████▊ | 78/161 [01:05<01:06, 1.25it/s]
78
  49%|████▉ | 79/161 [01:06<01:06, 1.24it/s]
79
  50%|████▉ | 80/161 [01:06<01:04, 1.25it/s]
80
  50%|█████ | 81/161 [01:07<01:03, 1.25it/s]
81
  51%|█████ | 82/161 [01:08<00:59, 1.33it/s]
82
  52%|█████▏ | 83/161 [01:08<00:53, 1.47it/s]
83
  52%|█████▏ | 84/161 [01:09<00:50, 1.53it/s]
84
  53%|█████▎ | 85/161 [01:10<00:52, 1.44it/s]
85
  53%|█████▎ | 86/161 [01:11<00:54, 1.38it/s]
86
  54%|█████▍ | 87/161 [01:12<00:58, 1.26it/s]
87
  55%|█████▍ | 88/161 [01:13<01:01, 1.18it/s]
88
  55%|█████▌ | 89/161 [01:13<01:01, 1.17it/s]
89
  56%|█████▌ | 90/161 [01:14<00:57, 1.23it/s]
90
  57%|█████▋ | 91/161 [01:15<00:53, 1.31it/s]
91
  57%|█████▋ | 92/161 [01:15<00:51, 1.35it/s]
92
  58%|█████▊ | 93/161 [01:16<00:50, 1.34it/s]
93
  58%|█████▊ | 94/161 [01:17<00:49, 1.36it/s]
94
  59%|█████▉ | 95/161 [01:18<00:48, 1.37it/s]
95
  60%|█████▉ | 96/161 [01:18<00:43, 1.49it/s]
96
  60%|██████ | 97/161 [01:19<00:43, 1.47it/s]
97
  61%|██████ | 98/161 [01:20<00:42, 1.48it/s]
98
  61%|██████▏ | 99/161 [01:20<00:41, 1.50it/s]
99
  62%|██████▏ | 100/161 [01:21<00:41, 1.46it/s]
100
  63%|██████▎ | 101/161 [01:22<00:39, 1.54it/s]
101
  63%|██████▎ | 102/161 [01:22<00:39, 1.50it/s]
102
  64%|██████▍ | 103/161 [01:23<00:39, 1.46it/s]
103
  65%|██████▍ | 104/161 [01:24<00:42, 1.36it/s]
104
  65%|██████▌ | 105/161 [01:25<00:41, 1.34it/s]
105
  66%|██████▌ | 106/161 [01:25<00:38, 1.43it/s]
106
  66%|██████▋ | 107/161 [01:26<00:36, 1.47it/s]
107
  67%|██████▋ | 108/161 [01:27<00:37, 1.42it/s]
108
  68%|██████▊ | 109/161 [01:27<00:36, 1.44it/s]
109
  68%|██████▊ | 110/161 [01:28<00:35, 1.45it/s]
110
  69%|██████▉ | 111/161 [01:29<00:35, 1.42it/s]
111
  70%|██████▉ | 112/161 [01:29<00:34, 1.43it/s]
112
  70%|███████ | 113/161 [01:30<00:33, 1.45it/s]
113
  71%|███████ | 114/161 [01:31<00:31, 1.49it/s]
114
  71%|███████▏ | 115/161 [01:31<00:30, 1.51it/s]
115
  72%|███████▏ | 116/161 [01:32<00:31, 1.45it/s]
116
  73%|███████▎ | 117/161 [01:33<00:30, 1.44it/s]
117
  73%|███████▎ | 118/161 [01:33<00:27, 1.55it/s]
118
  74%|███████▍ | 119/161 [01:34<00:25, 1.62it/s]
119
  75%|███████▍ | 120/161 [01:34<00:24, 1.66it/s]
120
  75%|███████▌ | 121/161 [01:35<00:24, 1.63it/s]
121
  76%|███████▌ | 122/161 [01:36<00:23, 1.69it/s]
122
  76%|███████▋ | 123/161 [01:36<00:24, 1.53it/s]
123
  77%|███████▋ | 124/161 [01:37<00:24, 1.48it/s]
124
  78%|███████▊ | 125/161 [01:38<00:24, 1.48it/s]
125
  78%|███████▊ | 126/161 [01:38<00:23, 1.50it/s]
126
  79%|███████▉ | 127/161 [01:39<00:23, 1.48it/s]
127
  80%|███████▉ | 128/161 [01:40<00:22, 1.44it/s]
128
  80%|████████ | 129/161 [01:41<00:25, 1.28it/s]
129
  81%|████████ | 130/161 [01:42<00:24, 1.27it/s]
130
  81%|████████▏ | 131/161 [01:42<00:21, 1.40it/s]
131
  82%|████████▏ | 132/161 [01:43<00:20, 1.43it/s]
132
  83%|████████▎ | 133/161 [01:43<00:19, 1.47it/s]
133
  83%|████████▎ | 134/161 [01:44<00:18, 1.43it/s]
134
  84%|████████▍ | 135/161 [01:45<00:17, 1.49it/s]
135
  84%|████████▍ | 136/161 [01:45<00:16, 1.49it/s]
136
  85%|████████▌ | 137/161 [01:46<00:16, 1.45it/s]
137
  86%|████████▌ | 138/161 [01:47<00:15, 1.48it/s]
138
  86%|████████▋ | 139/161 [01:47<00:14, 1.52it/s]
139
  87%|████████▋ | 140/161 [01:48<00:13, 1.51it/s]
140
  88%|████████▊ | 141/161 [01:49<00:13, 1.45it/s]
141
  88%|████████▊ | 142/161 [01:50<00:13, 1.44it/s]
142
  89%|████████▉ | 143/161 [01:50<00:12, 1.47it/s]
143
  89%|████████▉ | 144/161 [01:51<00:11, 1.46it/s]
144
  90%|█████████ | 145/161 [01:52<00:10, 1.46it/s]
145
  91%|█████████ | 146/161 [01:52<00:10, 1.37it/s]
146
  91%|█████████▏| 147/161 [01:54<00:15, 1.08s/it]
147
  92%|█████████▏| 148/161 [01:56<00:17, 1.38s/it]
148
  93%|█████████▎| 149/161 [01:58<00:15, 1.30s/it]
149
  93%|█████████▎| 150/161 [01:58<00:12, 1.13s/it]
150
  94%|█████████▍| 151/161 [01:59<00:09, 1.02it/s]
151
  94%|█████████▍| 152/161 [02:00<00:08, 1.11it/s]
152
  95%|█████████▌| 153/161 [02:01<00:07, 1.07it/s]
153
  96%|█████████▌| 154/161 [02:02<00:06, 1.09it/s]
154
  96%|█████████▋| 155/161 [02:02<00:05, 1.08it/s]
155
  97%|█████████▋| 156/161 [02:03<00:04, 1.17it/s]
156
  98%|█████████▊| 157/161 [02:04<00:03, 1.24it/s]
157
  98%|█████████▊| 158/161 [02:05<00:02, 1.29it/s]
158
  99%|█████████▉| 159/161 [02:05<00:01, 1.41it/s]
159
  99%|█████████▉| 160/161 [02:05<00:00, 1.71it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
2
+ wandb: wandb version 0.17.7 is available! To upgrade, please run:
3
+ wandb: $ pip install wandb --upgrade
4
+ wandb: Tracking run with wandb version 0.17.6
5
+ wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_173605-b43qqej3
6
+ wandb: Run `wandb offline` to turn off syncing.
7
+ wandb: Syncing run eval_pd20000_w500_s300_shuff100_hinglish
8
+ wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
9
+ wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/b43qqej3
10
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
11
+ warnings.warn(
12
+
13
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
14
+ warnings.warn(
15
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
16
+ warnings.warn(
17
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
18
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
19
+ max_steps is given, it will override any value given in num_train_epochs
20
+ Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
21
+ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
22
+ 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
23
+ 149: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
24
+ 150: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
25
+ }
26
+ CHECK MODEL PARAMS Wav2Vec2ForCTC(
27
+ (wav2vec2): Wav2Vec2Model(
28
+ (feature_extractor): Wav2Vec2FeatureEncoder(
29
+ (conv_layers): ModuleList(
30
+ (0): Wav2Vec2LayerNormConvLayer(
31
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
32
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
33
+ (activation): GELUActivation()
34
+ )
35
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
36
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
37
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
38
+ (activation): GELUActivation()
39
+ )
40
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
41
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
42
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
43
+ (activation): GELUActivation()
44
+ )
45
+ )
46
+ )
47
+ (feature_projection): Wav2Vec2FeatureProjection(
48
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
49
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
50
+ (dropout): Dropout(p=0.3, inplace=False)
51
+ )
52
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
53
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
54
+ (conv): ParametrizedConv1d(
55
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
56
+ (parametrizations): ModuleDict(
57
+ (weight): ParametrizationList(
58
+ (0): _WeightNorm()
59
+ )
60
+ )
61
+ )
62
+ (padding): Wav2Vec2SamePadLayer()
63
+ (activation): GELUActivation()
64
+ )
65
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
66
+ (dropout): Dropout(p=0.2, inplace=False)
67
+ (layers): ModuleList(
68
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
69
+ (attention): Wav2Vec2SdpaAttention(
70
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
71
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
72
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
73
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
74
+ )
75
+ (dropout): Dropout(p=0.2, inplace=False)
76
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
77
+ (feed_forward): Wav2Vec2FeedForward(
78
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
79
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
80
+ (intermediate_act_fn): GELUActivation()
81
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
82
+ (output_dropout): Dropout(p=0.2, inplace=False)
83
+ )
84
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
85
+ )
86
+ )
87
+ )
88
+ )
89
+ (dropout): Dropout(p=0.0, inplace=False)
90
+ (lm_head): Linear(in_features=1024, out_features=151, bias=True)
91
+ )
92
+ check the eval set length 2564
93
+ 08/22/2024 17:36:18 - INFO - __main__ - *** Evaluate ***
94
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
95
+ warnings.warn(
96
+
97
  0%| | 0/161 [00:00<?, ?it/s]
98
  1%| | 2/161 [00:00<01:07, 2.36it/s]
99
  2%|▏ | 3/161 [00:01<01:28, 1.79it/s]
100
  2%|▏ | 4/161 [00:02<01:51, 1.40it/s]
101
  3%|▎ | 5/161 [00:03<02:02, 1.27it/s]
102
  4%|▎ | 6/161 [00:04<02:07, 1.22it/s]
103
  4%|▍ | 7/161 [00:05<02:37, 1.02s/it]
104
  5%|▍ | 8/161 [00:08<03:33, 1.40s/it]
105
  6%|▌ | 9/161 [00:09<03:53, 1.54s/it]
106
  6%|▌ | 10/161 [00:10<03:25, 1.36s/it]
107
  7%|▋ | 11/161 [00:11<02:56, 1.18s/it]
108
  7%|▋ | 12/161 [00:12<02:30, 1.01s/it]
109
  8%|▊ | 13/161 [00:13<02:23, 1.03it/s]
110
  9%|▊ | 14/161 [00:14<02:43, 1.11s/it]
111
  9%|▉ | 15/161 [00:16<03:00, 1.24s/it]
112
  10%|▉ | 16/161 [00:17<02:47, 1.16s/it]
113
  11%|█ | 17/161 [00:17<02:23, 1.00it/s]
114
  11%|█ | 18/161 [00:18<02:09, 1.11it/s]
115
  12%|█▏ | 19/161 [00:19<01:59, 1.19it/s]
116
  12%|█▏ | 20/161 [00:19<01:57, 1.20it/s]
117
  13%|█▎ | 21/161 [00:20<01:45, 1.32it/s]
118
  14%|█▎ | 22/161 [00:21<01:51, 1.25it/s]
119
  14%|█▍ | 23/161 [00:23<02:30, 1.09s/it]
120
  15%|█▍ | 24/161 [00:24<02:29, 1.09s/it]
121
  16%|█▌ | 25/161 [00:25<02:20, 1.03s/it]
122
  16%|█▌ | 26/161 [00:25<02:11, 1.03it/s]
123
  17%|█▋ | 27/161 [00:26<02:02, 1.10it/s]
124
  17%|█▋ | 28/161 [00:27<01:54, 1.16it/s]
125
  18%|█▊ | 29/161 [00:28<01:49, 1.20it/s]
126
  19%|█▊ | 30/161 [00:28<01:45, 1.24it/s]
127
  19%|█▉ | 31/161 [00:29<01:36, 1.34it/s]
128
  20%|█▉ | 32/161 [00:30<01:30, 1.42it/s]
129
  20%|██ | 33/161 [00:30<01:30, 1.42it/s]
130
  21%|██ | 34/161 [00:31<01:27, 1.46it/s]
131
  22%|██▏ | 35/161 [00:32<01:25, 1.48it/s]
132
  22%|██▏ | 36/161 [00:32<01:22, 1.51it/s]
133
  23%|██▎ | 37/161 [00:33<01:19, 1.55it/s]
134
  24%|██▎ | 38/161 [00:34<01:20, 1.52it/s]
135
  24%|██▍ | 39/161 [00:34<01:24, 1.44it/s]
136
  25%|██▍ | 40/161 [00:35<01:29, 1.36it/s]
137
  25%|██▌ | 41/161 [00:36<01:36, 1.24it/s]
138
  26%|██▌ | 42/161 [00:37<01:40, 1.18it/s]
139
  27%|██▋ | 43/161 [00:38<01:41, 1.16it/s]
140
  27%|██▋ | 44/161 [00:39<01:42, 1.15it/s]
141
  28%|██▊ | 45/161 [00:40<01:34, 1.23it/s]
142
  29%|██▊ | 46/161 [00:40<01:28, 1.30it/s]
143
  29%|██▉ | 47/161 [00:41<01:28, 1.29it/s]
144
  30%|██▉ | 48/161 [00:42<01:28, 1.27it/s]
145
  30%|███ | 49/161 [00:43<01:27, 1.28it/s]
146
  31%|███ | 50/161 [00:43<01:28, 1.26it/s]
147
  32%|███▏ | 51/161 [00:44<01:29, 1.23it/s]
148
  32%|███▏ | 52/161 [00:45<01:34, 1.15it/s]
149
  33%|███▎ | 53/161 [00:46<01:36, 1.12it/s]
150
  34%|███▎ | 54/161 [00:47<01:32, 1.16it/s]
151
  34%|███▍ | 55/161 [00:48<01:25, 1.24it/s]
152
  35%|███▍ | 56/161 [00:48<01:18, 1.33it/s]
153
  35%|███▌ | 57/161 [00:49<01:14, 1.40it/s]
154
  36%|███▌ | 58/161 [00:50<01:11, 1.45it/s]
155
  37%|███▋ | 59/161 [00:50<01:07, 1.51it/s]
156
  37%|███▋ | 60/161 [00:51<01:04, 1.57it/s]
157
  38%|███▊ | 61/161 [00:52<01:06, 1.50it/s]
158
  39%|███▊ | 62/161 [00:52<01:07, 1.47it/s]
159
  39%|███▉ | 63/161 [00:53<01:06, 1.47it/s]
160
  40%|███▉ | 64/161 [00:54<01:09, 1.39it/s]
161
  40%|████ | 65/161 [00:55<01:11, 1.35it/s]
162
  41%|████ | 66/161 [00:55<01:12, 1.31it/s]
163
  42%|████▏ | 67/161 [00:56<01:12, 1.29it/s]
164
  42%|████▏ | 68/161 [00:57<01:12, 1.28it/s]
165
  43%|████▎ | 69/161 [00:58<01:10, 1.30it/s]
166
  43%|████▎ | 70/161 [00:59<01:12, 1.26it/s]
167
  44%|████▍ | 71/161 [00:59<01:11, 1.25it/s]
168
  45%|████▍ | 72/161 [01:00<01:13, 1.20it/s]
169
  45%|████▌ | 73/161 [01:01<01:13, 1.20it/s]
170
  46%|████▌ | 74/161 [01:02<01:10, 1.23it/s]
171
  47%|████▋ | 75/161 [01:02<01:04, 1.34it/s]
172
  47%|████▋ | 76/161 [01:03<01:03, 1.33it/s]
173
  48%|████▊ | 77/161 [01:04<01:04, 1.30it/s]
174
  48%|████▊ | 78/161 [01:05<01:06, 1.25it/s]
175
  49%|████▉ | 79/161 [01:06<01:06, 1.24it/s]
176
  50%|████▉ | 80/161 [01:06<01:04, 1.25it/s]
177
  50%|█████ | 81/161 [01:07<01:03, 1.25it/s]
178
  51%|█████ | 82/161 [01:08<00:59, 1.33it/s]
179
  52%|█████▏ | 83/161 [01:08<00:53, 1.47it/s]
180
  52%|█████▏ | 84/161 [01:09<00:50, 1.53it/s]
181
  53%|█████▎ | 85/161 [01:10<00:52, 1.44it/s]
182
  53%|█████▎ | 86/161 [01:11<00:54, 1.38it/s]
183
  54%|█████▍ | 87/161 [01:12<00:58, 1.26it/s]
184
  55%|█████▍ | 88/161 [01:13<01:01, 1.18it/s]
185
  55%|█████▌ | 89/161 [01:13<01:01, 1.17it/s]
186
  56%|█████▌ | 90/161 [01:14<00:57, 1.23it/s]
187
  57%|█████▋ | 91/161 [01:15<00:53, 1.31it/s]
188
  57%|█████▋ | 92/161 [01:15<00:51, 1.35it/s]
189
  58%|█████▊ | 93/161 [01:16<00:50, 1.34it/s]
190
  58%|█████▊ | 94/161 [01:17<00:49, 1.36it/s]
191
  59%|█████▉ | 95/161 [01:18<00:48, 1.37it/s]
192
  60%|█████▉ | 96/161 [01:18<00:43, 1.49it/s]
193
  60%|██████ | 97/161 [01:19<00:43, 1.47it/s]
194
  61%|██████ | 98/161 [01:20<00:42, 1.48it/s]
195
  61%|██████▏ | 99/161 [01:20<00:41, 1.50it/s]
196
  62%|██████▏ | 100/161 [01:21<00:41, 1.46it/s]
197
  63%|██████▎ | 101/161 [01:22<00:39, 1.54it/s]
198
  63%|██████▎ | 102/161 [01:22<00:39, 1.50it/s]
199
  64%|██████▍ | 103/161 [01:23<00:39, 1.46it/s]
200
  65%|██████▍ | 104/161 [01:24<00:42, 1.36it/s]
201
  65%|██████▌ | 105/161 [01:25<00:41, 1.34it/s]
202
  66%|██████▌ | 106/161 [01:25<00:38, 1.43it/s]
203
  66%|██████▋ | 107/161 [01:26<00:36, 1.47it/s]
204
  67%|██████▋ | 108/161 [01:27<00:37, 1.42it/s]
205
  68%|██████▊ | 109/161 [01:27<00:36, 1.44it/s]
206
  68%|██████▊ | 110/161 [01:28<00:35, 1.45it/s]
207
  69%|██████▉ | 111/161 [01:29<00:35, 1.42it/s]
208
  70%|██████▉ | 112/161 [01:29<00:34, 1.43it/s]
209
  70%|███████ | 113/161 [01:30<00:33, 1.45it/s]
210
  71%|███████ | 114/161 [01:31<00:31, 1.49it/s]
211
  71%|███████▏ | 115/161 [01:31<00:30, 1.51it/s]
212
  72%|███████▏ | 116/161 [01:32<00:31, 1.45it/s]
213
  73%|███████▎ | 117/161 [01:33<00:30, 1.44it/s]
214
  73%|███████▎ | 118/161 [01:33<00:27, 1.55it/s]
215
  74%|███████▍ | 119/161 [01:34<00:25, 1.62it/s]
216
  75%|███████▍ | 120/161 [01:34<00:24, 1.66it/s]
217
  75%|███████▌ | 121/161 [01:35<00:24, 1.63it/s]
218
  76%|███████▌ | 122/161 [01:36<00:23, 1.69it/s]
219
  76%|███████▋ | 123/161 [01:36<00:24, 1.53it/s]
220
  77%|███████▋ | 124/161 [01:37<00:24, 1.48it/s]
221
  78%|███████▊ | 125/161 [01:38<00:24, 1.48it/s]
222
  78%|███████▊ | 126/161 [01:38<00:23, 1.50it/s]
223
  79%|███████▉ | 127/161 [01:39<00:23, 1.48it/s]
224
  80%|███████▉ | 128/161 [01:40<00:22, 1.44it/s]
225
  80%|████████ | 129/161 [01:41<00:25, 1.28it/s]
226
  81%|████████ | 130/161 [01:42<00:24, 1.27it/s]
227
  81%|████████▏ | 131/161 [01:42<00:21, 1.40it/s]
228
  82%|████████▏ | 132/161 [01:43<00:20, 1.43it/s]
229
  83%|████████▎ | 133/161 [01:43<00:19, 1.47it/s]
230
  83%|████████▎ | 134/161 [01:44<00:18, 1.43it/s]
231
  84%|████████▍ | 135/161 [01:45<00:17, 1.49it/s]
232
  84%|████████▍ | 136/161 [01:45<00:16, 1.49it/s]
233
  85%|████████▌ | 137/161 [01:46<00:16, 1.45it/s]
234
  86%|████████▌ | 138/161 [01:47<00:15, 1.48it/s]
235
  86%|████████▋ | 139/161 [01:47<00:14, 1.52it/s]
236
  87%|████████▋ | 140/161 [01:48<00:13, 1.51it/s]
237
  88%|████████▊ | 141/161 [01:49<00:13, 1.45it/s]
238
  88%|████████▊ | 142/161 [01:50<00:13, 1.44it/s]
239
  89%|████████▉ | 143/161 [01:50<00:12, 1.47it/s]
240
  89%|████████▉ | 144/161 [01:51<00:11, 1.46it/s]
241
  90%|█████████ | 145/161 [01:52<00:10, 1.46it/s]
242
  91%|█████████ | 146/161 [01:52<00:10, 1.37it/s]
243
  91%|█████████▏| 147/161 [01:54<00:15, 1.08s/it]
244
  92%|█████████▏| 148/161 [01:56<00:17, 1.38s/it]
245
  93%|█████████▎| 149/161 [01:58<00:15, 1.30s/it]
246
  93%|█████████▎| 150/161 [01:58<00:12, 1.13s/it]
247
  94%|█████████▍| 151/161 [01:59<00:09, 1.02it/s]
248
  94%|█████████▍| 152/161 [02:00<00:08, 1.11it/s]
249
  95%|█████████▌| 153/161 [02:01<00:07, 1.07it/s]
250
  96%|█████████▌| 154/161 [02:02<00:06, 1.09it/s]
251
  96%|█████████▋| 155/161 [02:02<00:05, 1.08it/s]
252
  97%|█████████▋| 156/161 [02:03<00:04, 1.17it/s]
253
  98%|█████████▊| 157/161 [02:04<00:03, 1.24it/s]
254
  98%|█████████▊| 158/161 [02:05<00:02, 1.29it/s]
255
  99%|█████████▉| 159/161 [02:05<00:01, 1.41it/s]
256
  99%|█████████▉| 160/161 [02:05<00:00, 1.71it/s]
257
+ Printing predictions for a few samples:
258
+ Sample 1:
259
+ Reference: लिबर ऑफिस impress में एक प्रस्तुति document बनाना और बुनियादी formatting के इस spoken tutorial में आपका स्वागत है
260
+ ######
261
+
262
+
263
+ Prediction: liber ऑfis impes में एक प्रस्तुति document बनाना और बुनियादी formating के इस spoken tutorial में आपका स्वागै
264
+
265
+
266
+
267
+ Sample 2:
268
+ Reference: इस tutorial में हम impress window के भागों के बारे में सीखेंगे और कैसे स्लाइड इन्सर्ट करें और कॉपी करें फॉन्ट तथा फॉन्ट को फॉर्मेट करना सीखेंगे
269
+ ######
270
+
271
+
272
+ Prediction: इस tutorial में हम impres window के भागों के बारे में सीखेंगे और कैसे slide insert करें और copyfornt तथा font को format करना सीखेंगे
273
+
274
+
275
+
276
+ Sample 3:
277
+ Reference: यहाँ हम अपने ऑपरेटिंग सिस्टम के रूप में gnu/linux और लिबरऑफिस वर्जन 334 का उपयोग कर रहे हैं
278
+ ######
279
+
280
+
281
+ Prediction: यहाँ हम अपने operating system के रूप में gnu lिnuक और libr ofic version 334 का उपयोग कर रहे हं
282
+
283
+
284
+
285
+ Sample 4:
286
+ Reference: चलिए अपनी प्रस्तुति प्रेजैटेशन sample impress open करते हैं जिसे पिछले tutorial में बनाया था
287
+ ######
288
+
289
+
290
+ Prediction: चलिए अपनी प्रस्तुति sampl impres open करते हैं जिे
291
+
292
+
293
+
294
+ Sample 5:
295
+ Reference: चलिए देखते हैं कि screen पर क्या क्या है
296
+ ######
297
+
298
+
299
+ Prediction: चलिए देखते हैं कि scren पर क्या क्या है
300
+
301
+
302
+
303
+ last Reference string इस mission पर अधिक जानकारी दिए गए लिंक पर उपलब्ध है
304
+
305
+
306
+ last prediction string दिए गए link पर उपलब्ध हैspokepentutorialorg mcthpeint
307
+ ***** eval metrics *****
308
+ eval_cer = 0.2775
309
+ eval_loss = 1.3408
310
+ eval_model_preparation_time = 0.0045
311
+ eval_runtime = 0:02:21.90
312
+ eval_samples = 2564
313
+ eval_samples_per_second = 18.068
314
+ eval_steps_per_second = 1.135
315
+ eval_wer = 0.4149
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
json/default-1158ece026da9708/0.0.0/7483f22a71512872c377524b97484f6d20c275799bb9e7cd8fb3198178d8220a.incomplete_info.lock ADDED
File without changes
json/default-1158ece026da9708/0.0.0/7483f22a71512872c377524b97484f6d20c275799bb9e7cd8fb3198178d8220a/dataset_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"description": "", "citation": "", "homepage": "", "license": "", "features": {"audio_id": {"dtype": "string", "_type": "Value"}, "audio_paths": {"dtype": "string", "_type": "Value"}, "transcriptions": {"dtype": "string", "_type": "Value"}}, "builder_name": "json", "dataset_name": "json", "config_name": "default", "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 631424, "num_examples": 2564, "dataset_name": "json"}}, "download_checksums": {"/m/triton/scratch/elec/puhe/p/palp3/MUCS/mucs_language_segregated_data/MUCS_test_languagesep_data.json": {"num_bytes": 1275544, "checksum": null}}, "download_size": 1275544, "dataset_size": 631424, "size_in_bytes": 1906968}
json/default-1158ece026da9708/0.0.0/7483f22a71512872c377524b97484f6d20c275799bb9e7cd8fb3198178d8220a/json-train.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96d5b20df5f5f6550555e73f7655a68afc89e2091644cd26c204f08f4c1dd401
3
+ size 632904
json/default-1158ece026da9708/0.0.0/7483f22a71512872c377524b97484f6d20c275799bb9e7cd8fb3198178d8220a_builder.lock ADDED
File without changes
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08de7da709cb1c87182ea525062fcd525beeade5ce32613467ec0bcc59e40f04
3
+ size 1262426580
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3168320547d20d2b8c475e7ef20fae9bf5e7d4a6d67d69d3545e10ff1d5e0db
3
+ size 5432