File size: 2,002 Bytes
9ff6a7b
71a85c4
f9085fd
9ff6a7b
 
df6ba44
9ff6a7b
df6ba44
9ff6a7b
df6ba44
 
 
 
9ff6a7b
df6ba44
9ff6a7b
 
2274b01
e3f6f01
df6ba44
9ff6a7b
2274b01
 
 
e3f6f01
2274b01
 
 
 
 
e3f6f01
2274b01
 
 
 
 
 
 
9ff6a7b
df6ba44
9ff6a7b
2274b01
 
 
9ff6a7b
df6ba44
 
 
 
 
 
 
 
 
 
 
 
 
2274b01
df6ba44
 
 
 
 
 
 
 
 
 
e3f6f01
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
pipeline_tag: tabular-regression
library_name: TabPFN
---

# TabPFN v2: A Tabular Foundation Model

TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.

## Installation
```bash
pip install tabpfn
```

## Model Details
- **Developed by:** Prior Labs
- **Model type:** Transformer-based foundation model for tabular data
- **License:**  [Prior Labs License (Apache 2.0 with additional attribution requirement)](https://priorlabs.ai/tabpfn-license/)
- **Paper:** Published in Nature (January 2025)
- **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)

### 📚 Citation

```bibtex
@article{hollmann2025tabpfn,
 title={Accurate predictions on small data with a tabular foundation model},
 author={Hollmann, Noah and M{\"u}ller, Samuel and Purucker, Lennart and
         Krishnakumar, Arjun and K{\"o}rfer, Max and Hoo, Shi Bin and
         Schirrmeister, Robin Tibor and Hutter, Frank},
 journal={Nature},
 year={2025},
 month={01},
 day={09},
 doi={10.1038/s41586-024-08328-6},
 publisher={Springer Nature},
 url={https://www.nature.com/articles/s41586-024-08328-6},
}
```

## Quick Start

📚 For detailed usage examples and best practices, check out:
- [Interactive Colab Tutorial](https://tinyurl.com/tabpfn-colab-api)


## Technical Requirements
- Python ≥ 3.9
- PyTorch ≥ 2.1
- scikit-learn ≥ 1.0
- Hardware: 16GB+ RAM, CPU (GPU optional)

## Limitations
- Not designed for very large datasets
- Not suitable for non-tabular data formats

## Resources
- **Documentation:** https://priorlabs.ai/docs
- **Source:** https://github.com/priorlabs/tabpfn
- **Paper:** https://www.nature.com/articles/s41586-024-08328-6

### Team
- Noah Hollmann
- Samuel Müller
- Lennart Purucker
- Arjun Krishnakumar
- Max Körfer
- Shi Bin Hoo
- Robin Tibor Schirrmeister
- Frank Hutter
- Eddie Bergman
- Léo Grinsztajn