PrimWong commited on
Commit
32a066b
·
1 Parent(s): 35ca187

End of training

Browse files
README.md CHANGED
@@ -1,3 +1,237 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv2-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: layout_qa_hparam_tuning
8
+ results: []
9
  ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layout_qa_hparam_tuning
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 3.3973
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 5e-06
38
+ - train_batch_size: 5
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - num_epochs: 50
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-----:|:----:|:---------------:|
49
+ | 6.0364 | 0.28 | 50 | 5.7109 |
50
+ | 5.6991 | 0.55 | 100 | 5.3444 |
51
+ | 5.3564 | 0.83 | 150 | 5.0481 |
52
+ | 5.1086 | 1.1 | 200 | 4.8591 |
53
+ | 4.8464 | 1.38 | 250 | 4.6824 |
54
+ | 4.7178 | 1.66 | 300 | 4.5995 |
55
+ | 4.6003 | 1.93 | 350 | 4.4761 |
56
+ | 4.4415 | 2.21 | 400 | 4.3781 |
57
+ | 4.3911 | 2.49 | 450 | 4.3017 |
58
+ | 4.2507 | 2.76 | 500 | 4.2496 |
59
+ | 4.1975 | 3.04 | 550 | 4.2142 |
60
+ | 4.0971 | 3.31 | 600 | 4.1524 |
61
+ | 4.0671 | 3.59 | 650 | 4.1038 |
62
+ | 4.0225 | 3.87 | 700 | 4.0486 |
63
+ | 3.9641 | 4.14 | 750 | 4.0478 |
64
+ | 3.9662 | 4.42 | 800 | 4.0082 |
65
+ | 3.8185 | 4.7 | 850 | 4.0001 |
66
+ | 3.8798 | 4.97 | 900 | 3.9235 |
67
+ | 3.7622 | 5.25 | 950 | 3.9549 |
68
+ | 3.7109 | 5.52 | 1000 | 3.8668 |
69
+ | 3.7218 | 5.8 | 1050 | 3.8849 |
70
+ | 3.6718 | 6.08 | 1100 | 3.9426 |
71
+ | 3.6925 | 6.35 | 1150 | 3.8288 |
72
+ | 3.5893 | 6.63 | 1200 | 3.8240 |
73
+ | 3.5545 | 6.91 | 1250 | 3.8149 |
74
+ | 3.4922 | 7.18 | 1300 | 3.8104 |
75
+ | 3.5117 | 7.46 | 1350 | 3.8128 |
76
+ | 3.3699 | 7.73 | 1400 | 3.7590 |
77
+ | 3.4538 | 8.01 | 1450 | 3.7577 |
78
+ | 3.3669 | 8.29 | 1500 | 3.7370 |
79
+ | 3.3516 | 8.56 | 1550 | 3.7278 |
80
+ | 3.3264 | 8.84 | 1600 | 3.6671 |
81
+ | 3.3102 | 9.12 | 1650 | 3.6953 |
82
+ | 3.241 | 9.39 | 1700 | 3.6474 |
83
+ | 3.278 | 9.67 | 1750 | 3.8793 |
84
+ | 3.2593 | 9.94 | 1800 | 3.6447 |
85
+ | 3.1663 | 10.22 | 1850 | 3.8442 |
86
+ | 3.0952 | 10.5 | 1900 | 3.6431 |
87
+ | 3.1355 | 10.77 | 1950 | 3.6261 |
88
+ | 3.0874 | 11.05 | 2000 | 3.5631 |
89
+ | 3.0178 | 11.33 | 2050 | 3.5662 |
90
+ | 2.9257 | 11.6 | 2100 | 3.4744 |
91
+ | 2.9164 | 11.88 | 2150 | 3.4374 |
92
+ | 2.8061 | 12.15 | 2200 | 3.4550 |
93
+ | 2.8664 | 12.43 | 2250 | 3.4217 |
94
+ | 2.7886 | 12.71 | 2300 | 3.4294 |
95
+ | 2.8398 | 12.98 | 2350 | 3.3906 |
96
+ | 2.7823 | 13.26 | 2400 | 3.4311 |
97
+ | 2.7024 | 13.54 | 2450 | 3.4267 |
98
+ | 2.7443 | 13.81 | 2500 | 3.3412 |
99
+ | 2.6747 | 14.09 | 2550 | 3.3656 |
100
+ | 2.723 | 14.36 | 2600 | 3.5019 |
101
+ | 2.6278 | 14.64 | 2650 | 3.4287 |
102
+ | 2.5001 | 14.92 | 2700 | 3.5152 |
103
+ | 2.5718 | 15.19 | 2750 | 3.3615 |
104
+ | 2.5734 | 15.47 | 2800 | 3.3193 |
105
+ | 2.5112 | 15.75 | 2850 | 3.4028 |
106
+ | 2.4499 | 16.02 | 2900 | 3.4374 |
107
+ | 2.4631 | 16.3 | 2950 | 3.3910 |
108
+ | 2.4246 | 16.57 | 3000 | 3.2926 |
109
+ | 2.4075 | 16.85 | 3050 | 3.1869 |
110
+ | 2.3691 | 17.13 | 3100 | 3.2002 |
111
+ | 2.3557 | 17.4 | 3150 | 3.1995 |
112
+ | 2.309 | 17.68 | 3200 | 3.3596 |
113
+ | 2.2738 | 17.96 | 3250 | 3.2819 |
114
+ | 2.2371 | 18.23 | 3300 | 3.2793 |
115
+ | 2.2578 | 18.51 | 3350 | 3.1955 |
116
+ | 2.1887 | 18.78 | 3400 | 3.1516 |
117
+ | 2.2166 | 19.06 | 3450 | 3.1920 |
118
+ | 2.1767 | 19.34 | 3500 | 3.0891 |
119
+ | 2.1307 | 19.61 | 3550 | 3.1467 |
120
+ | 2.1769 | 19.89 | 3600 | 3.1935 |
121
+ | 2.0798 | 20.17 | 3650 | 3.2426 |
122
+ | 2.1029 | 20.44 | 3700 | 3.1828 |
123
+ | 2.0654 | 20.72 | 3750 | 3.2298 |
124
+ | 1.997 | 20.99 | 3800 | 3.2313 |
125
+ | 1.9933 | 21.27 | 3850 | 3.1501 |
126
+ | 2.0084 | 21.55 | 3900 | 3.0830 |
127
+ | 1.9963 | 21.82 | 3950 | 3.2029 |
128
+ | 1.889 | 22.1 | 4000 | 3.2676 |
129
+ | 2.0014 | 22.38 | 4050 | 3.0189 |
130
+ | 1.9031 | 22.65 | 4100 | 3.0549 |
131
+ | 1.9464 | 22.93 | 4150 | 3.2659 |
132
+ | 1.8972 | 23.2 | 4200 | 3.2271 |
133
+ | 1.8549 | 23.48 | 4250 | 3.0585 |
134
+ | 1.8106 | 23.76 | 4300 | 3.2286 |
135
+ | 1.8222 | 24.03 | 4350 | 3.2233 |
136
+ | 1.8537 | 24.31 | 4400 | 2.9525 |
137
+ | 1.7717 | 24.59 | 4450 | 3.1129 |
138
+ | 1.8045 | 24.86 | 4500 | 3.1795 |
139
+ | 1.7783 | 25.14 | 4550 | 3.1206 |
140
+ | 1.7119 | 25.41 | 4600 | 3.1325 |
141
+ | 1.6936 | 25.69 | 4650 | 3.0850 |
142
+ | 1.776 | 25.97 | 4700 | 2.8785 |
143
+ | 1.7269 | 26.24 | 4750 | 2.9847 |
144
+ | 1.6276 | 26.52 | 4800 | 3.0743 |
145
+ | 1.6228 | 26.8 | 4850 | 3.1257 |
146
+ | 1.7509 | 27.07 | 4900 | 3.0451 |
147
+ | 1.6658 | 27.35 | 4950 | 3.1540 |
148
+ | 1.6688 | 27.62 | 5000 | 2.9553 |
149
+ | 1.5576 | 27.9 | 5050 | 3.0843 |
150
+ | 1.5457 | 28.18 | 5100 | 3.1677 |
151
+ | 1.638 | 28.45 | 5150 | 3.0357 |
152
+ | 1.5004 | 28.73 | 5200 | 3.0918 |
153
+ | 1.6639 | 29.01 | 5250 | 3.0215 |
154
+ | 1.5465 | 29.28 | 5300 | 3.1257 |
155
+ | 1.4719 | 29.56 | 5350 | 3.0513 |
156
+ | 1.5599 | 29.83 | 5400 | 3.0366 |
157
+ | 1.5755 | 30.11 | 5450 | 2.9535 |
158
+ | 1.496 | 30.39 | 5500 | 3.0343 |
159
+ | 1.5915 | 30.66 | 5550 | 3.1121 |
160
+ | 1.4198 | 30.94 | 5600 | 3.0673 |
161
+ | 1.5062 | 31.22 | 5650 | 2.9743 |
162
+ | 1.3817 | 31.49 | 5700 | 3.0471 |
163
+ | 1.4361 | 31.77 | 5750 | 2.9827 |
164
+ | 1.4624 | 32.04 | 5800 | 3.2212 |
165
+ | 1.4895 | 32.32 | 5850 | 3.0745 |
166
+ | 1.4598 | 32.6 | 5900 | 3.0424 |
167
+ | 1.4379 | 32.87 | 5950 | 3.0214 |
168
+ | 1.429 | 33.15 | 6000 | 3.9556 |
169
+ | 1.4837 | 33.43 | 6050 | 3.0527 |
170
+ | 1.4427 | 33.7 | 6100 | 3.0360 |
171
+ | 1.6037 | 33.98 | 6150 | 3.0011 |
172
+ | 1.3789 | 34.25 | 6200 | 2.9842 |
173
+ | 1.4559 | 34.53 | 6250 | 2.9825 |
174
+ | 1.3494 | 34.81 | 6300 | 3.0216 |
175
+ | 1.3313 | 35.08 | 6350 | 2.9506 |
176
+ | 1.3074 | 35.36 | 6400 | 2.9899 |
177
+ | 1.3534 | 35.64 | 6450 | 3.3824 |
178
+ | 1.4189 | 35.91 | 6500 | 2.9109 |
179
+ | 1.2795 | 36.19 | 6550 | 3.2013 |
180
+ | 1.377 | 36.46 | 6600 | 3.1894 |
181
+ | 1.3627 | 36.74 | 6650 | 3.0203 |
182
+ | 1.3731 | 37.02 | 6700 | 3.0597 |
183
+ | 1.2557 | 37.29 | 6750 | 3.1781 |
184
+ | 1.362 | 37.57 | 6800 | 3.3320 |
185
+ | 1.3448 | 37.85 | 6850 | 3.0893 |
186
+ | 1.3337 | 38.12 | 6900 | 3.3698 |
187
+ | 1.3455 | 38.4 | 6950 | 3.0614 |
188
+ | 1.3397 | 38.67 | 7000 | 3.2179 |
189
+ | 1.2439 | 38.95 | 7050 | 3.1908 |
190
+ | 1.25 | 39.23 | 7100 | 3.3292 |
191
+ | 1.3099 | 39.5 | 7150 | 3.1604 |
192
+ | 1.3465 | 39.78 | 7200 | 3.1365 |
193
+ | 1.2703 | 40.06 | 7250 | 3.2937 |
194
+ | 1.2662 | 40.33 | 7300 | 3.3199 |
195
+ | 1.233 | 40.61 | 7350 | 3.1995 |
196
+ | 1.2786 | 40.88 | 7400 | 3.1360 |
197
+ | 1.3409 | 41.16 | 7450 | 3.1513 |
198
+ | 1.2395 | 41.44 | 7500 | 3.2488 |
199
+ | 1.1858 | 41.71 | 7550 | 3.3637 |
200
+ | 1.3312 | 41.99 | 7600 | 3.2043 |
201
+ | 1.2245 | 42.27 | 7650 | 3.3381 |
202
+ | 1.2631 | 42.54 | 7700 | 3.3504 |
203
+ | 1.257 | 42.82 | 7750 | 3.1843 |
204
+ | 1.1715 | 43.09 | 7800 | 3.3320 |
205
+ | 1.2017 | 43.37 | 7850 | 3.1980 |
206
+ | 1.2711 | 43.65 | 7900 | 3.2528 |
207
+ | 1.2091 | 43.92 | 7950 | 3.1928 |
208
+ | 1.2574 | 44.2 | 8000 | 3.4765 |
209
+ | 1.1915 | 44.48 | 8050 | 3.2830 |
210
+ | 1.1754 | 44.75 | 8100 | 3.3196 |
211
+ | 1.263 | 45.03 | 8150 | 3.2323 |
212
+ | 1.1522 | 45.3 | 8200 | 3.2954 |
213
+ | 1.1563 | 45.58 | 8250 | 3.3078 |
214
+ | 1.2196 | 45.86 | 8300 | 3.4295 |
215
+ | 1.2375 | 46.13 | 8350 | 3.3431 |
216
+ | 1.2307 | 46.41 | 8400 | 3.3140 |
217
+ | 1.1926 | 46.69 | 8450 | 3.3558 |
218
+ | 1.1743 | 46.96 | 8500 | 3.2817 |
219
+ | 1.1721 | 47.24 | 8550 | 3.2732 |
220
+ | 1.192 | 47.51 | 8600 | 3.3022 |
221
+ | 1.1642 | 47.79 | 8650 | 3.3513 |
222
+ | 1.2049 | 48.07 | 8700 | 3.3494 |
223
+ | 1.1157 | 48.34 | 8750 | 3.3900 |
224
+ | 1.2006 | 48.62 | 8800 | 3.3109 |
225
+ | 1.1384 | 48.9 | 8850 | 3.3915 |
226
+ | 1.1437 | 49.17 | 8900 | 3.4193 |
227
+ | 1.2226 | 49.45 | 8950 | 3.3782 |
228
+ | 1.1074 | 49.72 | 9000 | 3.3965 |
229
+ | 1.1955 | 50.0 | 9050 | 3.3973 |
230
+
231
+
232
+ ### Framework versions
233
+
234
+ - Transformers 4.35.2
235
+ - Pytorch 2.1.1+cu121
236
+ - Datasets 2.15.0
237
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e2f64c36402df0216f9dc2ecf0cea99e0927a61b19ca72273fc6a0368b957ad
3
  size 802053752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35db980b48a04ad97bd11f629ef67e1cd1c58aabe4d006a646278bed5975e873
3
  size 802053752
runs/Dec12_13-36-09_cmkl-MS-7C06/events.out.tfevents.1702362975.cmkl-MS-7C06.3612.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb7fb140b7390b066f8b460fac23a00291a750e311cf30b969a08eba497249af
3
- size 83310
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91d39374436838a3cc7a27059ffa06b3d94a980ba7446892096066bc26de6fbd
3
+ size 84092