Prikshit7766 commited on
Commit
e11c249
·
verified ·
1 Parent(s): c2a8ee2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Marian Fine-tuned English-French Translation Model
2
+
3
+ ## Model Description
4
+
5
+ This model is a fine-tuned version of `Helsinki-NLP/opus-mt-en-fr`, specifically trained for English to French translation. The base model was further trained on the `KDE4` dataset to improve translation quality for technical and software-related content.
6
+
7
+ ## Model Training Details
8
+
9
+ ### Training Dataset
10
+ - **Dataset**: KDE4 Dataset (English-French parallel corpus)
11
+ - **Split Distribution**:
12
+ - Training set: 189,155 examples (90%)
13
+ - Test set: 21,018 examples (10%)
14
+
15
+ ### Training Configuration
16
+ - **Base Model**: Helsinki-NLP/opus-mt-en-fr
17
+ - **Training Arguments**:
18
+ - Learning rate: 2e-5
19
+ - Batch size: 32 (training), 64 (evaluation)
20
+ - Number of epochs: 10
21
+ - Weight decay: 0.01
22
+ - FP16 training enabled
23
+ - Evaluation strategy: Before and after training
24
+ - Checkpoint saving: Every epoch (maximum 3 saved)
25
+ - Training device: GPU with mixed precision (fp16)
26
+
27
+ ## Model Results
28
+
29
+ ### Evaluation Metrics
30
+
31
+ The model was evaluated using the BLEU score. The evaluation results before and after training are summarized in the table below:
32
+
33
+ | **Stage** | **Eval Loss** | **BLEU Score** |
34
+ |--------------------|---------------|----------------|
35
+ | **Before Training** | 1.700 | 38.97 |
36
+ | **After Training** | 0.796 | 54.96 |
37
+
38
+
39
+ ### Training Loss
40
+
41
+ The training loss decreased over the epochs, indicating that the model was learning effectively. The final training loss was approximately 0.710.
42
+
43
+
44
+ ## Model Usage
45
+
46
+
47
+ ```python
48
+ from transformers import pipeline
49
+
50
+ model_checkpoint = "Prikshit7766/marian-finetuned-kde4-en-to-fr"
51
+ translator = pipeline("translation", model=model_checkpoint)
52
+ translator("Default to expanded threads")
53
+ ```
54
+
55
+ ### Example Output
56
+
57
+ ```plaintext
58
+ [{'translation_text': 'Par défaut, développer les fils de discussion'}]
59
+ ```