File size: 1,839 Bytes
420bc3f
 
 
 
91d0d0b
420bc3f
 
 
 
 
feb98be
420bc3f
 
 
91d0d0b
 
420bc3f
 
 
 
 
 
 
91d0d0b
420bc3f
51a82fb
 
 
 
 
420bc3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a82fb
420bc3f
 
 
 
 
51a82fb
 
 
 
420bc3f
 
 
 
 
 
 
91d0d0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
tags:
- generated_from_trainer
- text_classification
metrics:
- accuracy
- precision
- recall
- f1
base_model: roberta-large
model-index:
- name: roberta-large-go-emotions
  results: []
datasets:
- go_emotions
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-large-go-emotions

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an go emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0827
- Accuracy: 0.4589
- Precision: 0.5252
- Recall: 0.5203
- F1: 0.5142

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 1.0   | 679  | 0.0864          | 0.4412   | 0.4810    | 0.4637 | 0.4557 |
| 0.1012        | 2.0   | 1358 | 0.0810          | 0.4410   | 0.5468    | 0.5244 | 0.5147 |
| 0.1012        | 3.0   | 2037 | 0.0820          | 0.4493   | 0.5180    | 0.5262 | 0.5092 |
| 0.0659        | 4.0   | 2716 | 0.0827          | 0.4589   | 0.5252    | 0.5203 | 0.5142 |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.1