|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from einops import rearrange |
|
from PIL import Image, ImageFilter, ImageOps |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from torchvision import transforms |
|
|
|
class Mlp(nn.Module): |
|
""" Multilayer perceptron.""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" Forward function. |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
""" Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, num_heads, window_size=7, shift_size=0, |
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
self.H = None |
|
self.W = None |
|
|
|
def forward(self, x, mask_matrix): |
|
""" Forward function. |
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
mask_matrix: Attention mask for cyclic shift. |
|
""" |
|
B, L, C = x.shape |
|
H, W = self.H, self.W |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
attn_mask = mask_matrix |
|
else: |
|
shifted_x = x |
|
attn_mask = None |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
attn_windows = self.attn(x_windows, mask=attn_mask) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = x.view(B, H * W, C) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer |
|
Args: |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
def __init__(self, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_input = (H % 2 == 1) or (W % 2 == 1) |
|
if pad_input: |
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of feature channels |
|
depth (int): Depths of this stage. |
|
num_heads (int): Number of attention head. |
|
window_size (int): Local window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.shift_size = window_size // 2 |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock( |
|
dim=dim, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
|
|
|
|
Hp = int(np.ceil(H / self.window_size)) * self.window_size |
|
Wp = int(np.ceil(W / self.window_size)) * self.window_size |
|
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
|
for blk in self.blocks: |
|
blk.H, blk.W = H, W |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, attn_mask) |
|
else: |
|
x = blk(x, attn_mask) |
|
if self.downsample is not None: |
|
x_down = self.downsample(x, H, W) |
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2 |
|
return x, H, W, x_down, Wh, Ww |
|
else: |
|
return x, H, W, x, H, W |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
Args: |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
self.patch_size = patch_size |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, H, W = x.size() |
|
if W % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) |
|
if H % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
Wh, Ww = x.size(2), x.size(3) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) |
|
|
|
return x |
|
|
|
|
|
class SwinTransformer(nn.Module): |
|
""" Swin Transformer backbone. |
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
https://arxiv.org/pdf/2103.14030 |
|
Args: |
|
pretrain_img_size (int): Input image size for training the pretrained model, |
|
used in absolute postion embedding. Default 224. |
|
patch_size (int | tuple(int)): Patch size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
depths (tuple[int]): Depths of each Swin Transformer stage. |
|
num_heads (tuple[int]): Number of attention head of each stage. |
|
window_size (int): Window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
drop_rate (float): Dropout rate. |
|
attn_drop_rate (float): Attention dropout rate. Default: 0. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2. |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True. |
|
out_indices (Sequence[int]): Output from which stages. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
pretrain_img_size=224, |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_layer=nn.LayerNorm, |
|
ape=False, |
|
patch_norm=True, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=-1, |
|
use_checkpoint=False): |
|
super().__init__() |
|
|
|
self.pretrain_img_size = pretrain_img_size |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
if self.ape: |
|
pretrain_img_size = to_2tuple(pretrain_img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]] |
|
|
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(embed_dim * 2 ** i_layer), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint) |
|
self.layers.append(layer) |
|
|
|
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] |
|
self.num_features = num_features |
|
|
|
|
|
for i_layer in out_indices: |
|
layer = norm_layer(num_features[i_layer]) |
|
layer_name = f'norm{i_layer}' |
|
self.add_module(layer_name, layer) |
|
|
|
self._freeze_stages() |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
self.patch_embed.eval() |
|
for param in self.patch_embed.parameters(): |
|
param.requires_grad = False |
|
|
|
if self.frozen_stages >= 1 and self.ape: |
|
self.absolute_pos_embed.requires_grad = False |
|
|
|
if self.frozen_stages >= 2: |
|
self.pos_drop.eval() |
|
for i in range(0, self.frozen_stages - 1): |
|
m = self.layers[i] |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
def forward(self, x): |
|
|
|
x = self.patch_embed(x) |
|
|
|
Wh, Ww = x.size(2), x.size(3) |
|
if self.ape: |
|
|
|
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic') |
|
x = (x + absolute_pos_embed) |
|
|
|
outs = [x.contiguous()] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.pos_drop(x) |
|
|
|
|
|
for i in range(self.num_layers): |
|
layer = self.layers[i] |
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) |
|
|
|
|
|
if i in self.out_indices: |
|
norm_layer = getattr(self, f'norm{i}') |
|
x_out = norm_layer(x_out) |
|
|
|
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() |
|
outs.append(out) |
|
|
|
|
|
|
|
return tuple(outs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "gelu": |
|
return F.gelu |
|
|
|
raise RuntimeError(F"activation should be gelu, not {activation}.") |
|
|
|
|
|
def make_cbr(in_dim, out_dim): |
|
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU()) |
|
|
|
|
|
def make_cbg(in_dim, out_dim): |
|
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU()) |
|
|
|
|
|
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'): |
|
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation) |
|
|
|
|
|
def resize_as(x, y, interpolation='bilinear'): |
|
return F.interpolate(x, size=y.shape[-2:], mode=interpolation) |
|
|
|
|
|
def image2patches(x): |
|
"""b c (hg h) (wg w) -> (hg wg b) c h w""" |
|
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2) |
|
return x |
|
|
|
|
|
def patches2image(x): |
|
"""(hg wg b) c h w -> b c (hg h) (wg w)""" |
|
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2) |
|
return x |
|
class PositionEmbeddingSine: |
|
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32) |
|
|
|
def __call__(self, b, h, w): |
|
device = self.dim_t.device |
|
mask = torch.zeros([b, h, w], dtype=torch.bool, device=device) |
|
assert mask is not None |
|
not_mask = ~mask |
|
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats) |
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
|
|
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
|
|
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
|
|
|
|
class MCLM(nn.Module): |
|
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]): |
|
super(MCLM, self).__init__() |
|
self.attention = nn.ModuleList([ |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) |
|
]) |
|
|
|
self.linear1 = nn.Linear(d_model, d_model * 2) |
|
self.linear2 = nn.Linear(d_model * 2, d_model) |
|
self.linear3 = nn.Linear(d_model, d_model * 2) |
|
self.linear4 = nn.Linear(d_model * 2, d_model) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(0.1) |
|
self.dropout1 = nn.Dropout(0.1) |
|
self.dropout2 = nn.Dropout(0.1) |
|
self.activation = get_activation_fn('gelu') |
|
self.pool_ratios = pool_ratios |
|
self.p_poses = [] |
|
self.g_pos = None |
|
self.positional_encoding = PositionEmbeddingSine(num_pos_feats=d_model // 2, normalize=True) |
|
|
|
def forward(self, l, g): |
|
""" |
|
l: 4,c,h,w |
|
g: 1,c,h,w |
|
""" |
|
b, c, h, w = l.size() |
|
|
|
concated_locs = rearrange(l, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2) |
|
|
|
pools = [] |
|
for pool_ratio in self.pool_ratios: |
|
|
|
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) |
|
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw) |
|
pools.append(rearrange(pool, 'b c h w -> (h w) b c')) |
|
if self.g_pos is None: |
|
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2], pool.shape[3]) |
|
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c') |
|
self.p_poses.append(pos_emb) |
|
pools = torch.cat(pools, 0) |
|
if self.g_pos is None: |
|
self.p_poses = torch.cat(self.p_poses, dim=0) |
|
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3]) |
|
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c') |
|
|
|
device = pools.device |
|
self.p_poses = self.p_poses.to(device) |
|
self.g_pos = self.g_pos.to(device) |
|
|
|
|
|
|
|
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c') |
|
|
|
|
|
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0]) |
|
g_hw_b_c = self.norm1(g_hw_b_c) |
|
g_hw_b_c = g_hw_b_c + self.dropout2(self.linear2(self.dropout(self.activation(self.linear1(g_hw_b_c)).clone()))) |
|
g_hw_b_c = self.norm2(g_hw_b_c) |
|
|
|
|
|
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c") |
|
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w) |
|
_g_hw_b_c = rearrange(_g_hw_b_c, "(ng h) (nw w) b c -> (h w) (ng nw b) c", ng=2, nw=2) |
|
outputs_re = [] |
|
for i, (_l, _g) in enumerate(zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))): |
|
outputs_re.append(self.attention[i + 1](_l, _g, _g)[0]) |
|
outputs_re = torch.cat(outputs_re, 1) |
|
|
|
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re) |
|
l_hw_b_c = self.norm1(l_hw_b_c) |
|
l_hw_b_c = l_hw_b_c + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(l_hw_b_c)).clone()))) |
|
l_hw_b_c = self.norm2(l_hw_b_c) |
|
|
|
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) |
|
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MCRM(nn.Module): |
|
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None): |
|
super(MCRM, self).__init__() |
|
self.attention = nn.ModuleList([ |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) |
|
]) |
|
self.linear3 = nn.Linear(d_model, d_model * 2) |
|
self.linear4 = nn.Linear(d_model * 2, d_model) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(0.1) |
|
self.dropout1 = nn.Dropout(0.1) |
|
self.dropout2 = nn.Dropout(0.1) |
|
self.sigmoid = nn.Sigmoid() |
|
self.activation = get_activation_fn('gelu') |
|
self.sal_conv = nn.Conv2d(d_model, 1, 1) |
|
self.pool_ratios = pool_ratios |
|
|
|
def forward(self, x): |
|
device = x.device |
|
b, c, h, w = x.size() |
|
loc, glb = x.split([4, 1], dim=0) |
|
|
|
patched_glb = rearrange(glb, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2) |
|
|
|
token_attention_map = self.sigmoid(self.sal_conv(glb)) |
|
token_attention_map = F.interpolate(token_attention_map, size=patches2image(loc).shape[-2:], mode='nearest') |
|
loc = loc * rearrange(token_attention_map, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2) |
|
|
|
pools = [] |
|
for pool_ratio in self.pool_ratios: |
|
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) |
|
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw) |
|
pools.append(rearrange(pool, 'nl c h w -> nl c (h w)')) |
|
|
|
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c") |
|
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c') |
|
|
|
outputs = [] |
|
for i, q in enumerate(loc_.unbind(dim=0)): |
|
v = pools[i] |
|
k = v |
|
outputs.append(self.attention[i](q, k, v)[0]) |
|
|
|
outputs = torch.cat(outputs, 1) |
|
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs) |
|
src = self.norm1(src) |
|
src = src + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(src)).clone()))) |
|
src = self.norm2(src) |
|
src = src.permute(1, 2, 0).reshape(4, c, h, w) |
|
glb = glb + F.interpolate(patches2image(src), size=glb.shape[-2:], mode='nearest') |
|
|
|
return torch.cat((src, glb), 0), token_attention_map |
|
|
|
|
|
class BEN_Base(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.backbone = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12) |
|
emb_dim = 128 |
|
self.sideout5 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout4 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout3 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout2 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout1 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
|
|
self.output5 = make_cbr(1024, emb_dim) |
|
self.output4 = make_cbr(512, emb_dim) |
|
self.output3 = make_cbr(256, emb_dim) |
|
self.output2 = make_cbr(128, emb_dim) |
|
self.output1 = make_cbr(128, emb_dim) |
|
|
|
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8]) |
|
self.conv1 = make_cbr(emb_dim, emb_dim) |
|
self.conv2 = make_cbr(emb_dim, emb_dim) |
|
self.conv3 = make_cbr(emb_dim, emb_dim) |
|
self.conv4 = make_cbr(emb_dim, emb_dim) |
|
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
|
|
self.insmask_head = nn.Sequential( |
|
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1), |
|
nn.InstanceNorm2d(384), |
|
nn.GELU(), |
|
nn.Conv2d(384, 384, kernel_size=3, padding=1), |
|
nn.InstanceNorm2d(384), |
|
nn.GELU(), |
|
nn.Conv2d(384, emb_dim, kernel_size=3, padding=1) |
|
) |
|
|
|
self.shallow = nn.Sequential(nn.Conv2d(3, emb_dim, kernel_size=3, padding=1)) |
|
self.upsample1 = make_cbg(emb_dim, emb_dim) |
|
self.upsample2 = make_cbg(emb_dim, emb_dim) |
|
self.output = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.GELU) or isinstance(m, nn.Dropout): |
|
m.inplace = True |
|
|
|
def forward(self, x): |
|
device = x.device |
|
shallow = self.shallow(x) |
|
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear') |
|
loc = image2patches(x) |
|
input = torch.cat((loc, glb), dim=0) |
|
feature = self.backbone(input) |
|
e5 = self.output5(feature[4]) |
|
e4 = self.output4(feature[3]) |
|
e3 = self.output3(feature[2]) |
|
e2 = self.output2(feature[1]) |
|
e1 = self.output1(feature[0]) |
|
loc_e5, glb_e5 = e5.split([4, 1], dim=0) |
|
e5 = self.multifieldcrossatt(loc_e5, glb_e5) |
|
|
|
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4)) |
|
e4 = self.conv4(e4) |
|
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3)) |
|
e3 = self.conv3(e3) |
|
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2)) |
|
e2 = self.conv2(e2) |
|
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1)) |
|
e1 = self.conv1(e1) |
|
loc_e1, glb_e1 = e1.split([4, 1], dim=0) |
|
output1_cat = patches2image(loc_e1) |
|
output1_cat = output1_cat + resize_as(glb_e1, output1_cat) |
|
final_output = self.insmask_head(output1_cat) |
|
final_output = final_output + resize_as(shallow, final_output) |
|
final_output = self.upsample1(rescale_to(final_output)) |
|
final_output = rescale_to(final_output + resize_as(shallow, final_output)) |
|
final_output = self.upsample2(final_output) |
|
final_output = self.output(final_output) |
|
|
|
return final_output.sigmoid() |
|
|
|
def inference(self,image): |
|
image, h, w,original_image = rgb_loader_refiner(image) |
|
|
|
img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device) |
|
|
|
res = self.forward(img_tensor) |
|
|
|
pred_array = postprocess_image(res, im_size=[w, h]) |
|
|
|
mask_image = Image.fromarray(pred_array, mode='L') |
|
|
|
blurred_mask = mask_image.filter(ImageFilter.GaussianBlur(radius=1)) |
|
|
|
original_image_rgba = original_image.convert("RGBA") |
|
|
|
foreground = original_image_rgba.copy() |
|
|
|
foreground.putalpha(blurred_mask) |
|
|
|
return blurred_mask, foreground |
|
|
|
def loadcheckpoints(self,model_path): |
|
model_dict = torch.load(model_path,map_location="cpu") |
|
self.load_state_dict(model_dict['model_state_dict'], strict=True) |
|
del model_path |
|
|
|
|
|
|
|
|
|
def rgb_loader_refiner( original_image): |
|
h, w = original_image.size |
|
|
|
image = ImageOps.exif_transpose(original_image) |
|
|
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
|
|
|
|
image = image.resize((1024, 1024), resample=Image.LANCZOS) |
|
|
|
return image.convert('RGB'), h, w,original_image |
|
|
|
|
|
img_transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.ConvertImageDtype(torch.float32), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: |
|
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result - mi) / (ma - mi) |
|
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) |
|
im_array = np.squeeze(im_array) |
|
return im_array |
|
|
|
|
|
|
|
|
|
|