File size: 1,274 Bytes
f4ec5b0 45a7bec f4ec5b0 19cccb6 0f0fe2f 7d1b6e1 dc4f604 7d1b6e1 dc4f604 7d1b6e1 dc4f604 2cd441b dc4f604 7d1b6e1 dc4f604 7d1b6e1 dc4f604 3388311 f4ec5b0 6b1c941 066b9a1 6b1c941 f4ec5b0 6b1c941 f4ec5b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
---
# BEN - Background Erase Network (Beta Base Model)
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
- MADE IN AMERICA
## Quick Start Code
```python
from BEN import model
from PIL import Image
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
file = "./image2.jpg" # input image
model = model.BEN_Base().to(device).eval() #init pipeline
model.loadcheckpoints("./BEN/BEN_Base.pth")
image = Image.open(file)
mask, foreground = model.inference(image)
mask.save("./mask.png")
foreground.save("./foreground.png")
```
# BEN SOA Benchmarks on Disk 5k Eval
### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
- MAE: 0.0283
- DICE: 0.8976
- IOU: 0.8430
- BER: 0.0542
- ACC: 0.9725
### BEN_Base:
- MAE: 0.0331
- DICE: 0.8743
- IOU: 0.8301
- BER: 0.0560
- ACC: 0.9700
### MVANet (old SOTA):
- MAE: 0.0353
- DICE: 0.8676
- IOU: 0.8104
- BER: 0.0639
- ACC: 0.9660
## Features
- Background removal from images
- Generates both binary mask and foreground image
- CUDA support for GPU acceleration
- Simple API for easy integration
## Installation
1. Clone Repo
2. Install requirements.txt
|