File size: 2,023 Bytes
5b7a31c 2674f73 5b7a31c 2674f73 5b7a31c 2674f73 5b7a31c e7e046d 5b7a31c db73a7e 5b7a31c db73a7e 2674f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Pongsasit Thongpramoon
- **Model type:** Cross Encoder
- **Language(s) (NLP):** Thai
- **Finetuned from model:** cross-encoder/ms-marco-MiniLM-L-12-v2
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from sentence_transformers.cross_encoder import CrossEncoder
model = CrossEncoder("Pongsasit/mod-th-cross-encoder-minilm")
th_question = "การใช้สีส่งผลต่ออารมณ์ของภาพวาดอย่างไร"
th_answer1 = "เมื่อศิลปินเลือกเฉดสีที่แตกต่างกัน มันก็เหมือนกับการเลือกความรู้สึกที่แตกต่างกันให้กับภาพของพวกเขา!"
th_answer2 = "ทำไมสิ่งเล็กๆ น้อยๆ บางครั้งจึงดูเหมือนอยู่สองแห่งในเวลาเดียวกัน? เหมือนพยายามจับผีเล่นซ่อนหา!"
en_question = "How does the use of color contribute to the emotional impact of a painting?"
en_answer1 = "When an artist picks different shades, it's like picking different feelings for their picture!"
en_answer2 = "Why do really tiny things sometimes seem to be in two places at the same time? It's like trying to catch a sneaky ghost playing hide and seek!"
th_scores = model.predict([[th_question, th_answer1], [th_question, th_answer2]])
en_scores = model.predict([[en_question, en_answer1], [en_question, en_answer2]])
``` |