File size: 2,023 Bytes
5b7a31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674f73
 
 
 
5b7a31c
 
 
 
 
2674f73
5b7a31c
2674f73
5b7a31c
e7e046d
5b7a31c
db73a7e
 
 
5b7a31c
db73a7e
 
 
 
 
 
2674f73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
library_name: transformers
tags: []
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** Pongsasit Thongpramoon
- **Model type:** Cross Encoder
- **Language(s) (NLP):** Thai
- **Finetuned from model:** cross-encoder/ms-marco-MiniLM-L-12-v2


## How to Get Started with the Model

Use the code below to get started with the model.
```python

from sentence_transformers.cross_encoder import CrossEncoder

model = CrossEncoder("Pongsasit/mod-th-cross-encoder-minilm")

th_question = "การใช้สีส่งผลต่ออารมณ์ของภาพวาดอย่างไร"
th_answer1 = "เมื่อศิลปินเลือกเฉดสีที่แตกต่างกัน มันก็เหมือนกับการเลือกความรู้สึกที่แตกต่างกันให้กับภาพของพวกเขา!"
th_answer2 = "ทำไมสิ่งเล็กๆ น้อยๆ บางครั้งจึงดูเหมือนอยู่สองแห่งในเวลาเดียวกัน? เหมือนพยายามจับผีเล่นซ่อนหา!"

en_question = "How does the use of color contribute to the emotional impact of a painting?"
en_answer1 = "When an artist picks different shades, it's like picking different feelings for their picture!"
en_answer2 = "Why do really tiny things sometimes seem to be in two places at the same time? It's like trying to catch a sneaky ghost playing hide and seek!"

th_scores = model.predict([[th_question, th_answer1], [th_question, th_answer2]])
en_scores = model.predict([[en_question, en_answer1], [en_question, en_answer2]])
```