PeterJinGo commited on
Commit
7c16991
1 Parent(s): 387fac5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -3
README.md CHANGED
@@ -1,3 +1,117 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # Virtual Artist
6
+
7
+
8
+ ## Introduction
9
+
10
+ We propose a graph context-conditioned diffusion model called **InstructG2I** to generate images from multimodal attributed graphs (MMAGs).
11
+ InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling by combining personalized page rank and re-ranking based on vision-language features.
12
+ Then, a Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process of diffusion.
13
+ Finally, we propose graph classifier-free guidance, enabling controllable generation by varying the strength of graph guidance and multiple connected edges to a node.
14
+
15
+ ![arch](figs/intro.png)
16
+
17
+
18
+ ## Installation
19
+ ```bash
20
+ conda create --name instructg2i python==3.10
21
+ conda activate instructg2i
22
+
23
+ git clone https://github.com/PeterGriffinJin/InstructG2I.git
24
+ conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
25
+ pip install -e .
26
+ ```
27
+
28
+ ## Quick Start
29
+
30
+ Generate a picture called *a mountain in the blue sky* under Claude Monet's style <img src="figs/artist.svg" width="30" height="30" />.
31
+
32
+ ```python
33
+ import os
34
+ from PIL import Image
35
+ from instructg2i import InstructG2IPipeline, get_neighbor_transforms
36
+
37
+ text_prompt = 'a mountain in the blue sky' # a man playing soccer, a man playing piano
38
+ neighbor_pic_dir = 'examples/monet_pictures'
39
+
40
+ neighbor_transforms = get_neighbor_transforms(resolution=256)
41
+ pipeline = InstructG2IPipeline.from_pretrained("PeterJinGo/VirtualArtist", neighbor_num=5, device='cuda:0')
42
+
43
+ neighbor_image = [neighbor_transforms(Image.open(f'{neighbor_pic_dir}/{n_file}').convert("RGB")) for n_file in os.listdir(neighbor_pic_dir)]
44
+ image_gen = pipeline(prompt=text_prompt, neighbor_image=neighbor_image, neighbor_mask=[1] * len(neighbor_image), num_inference_steps=100).images[0]
45
+ image_gen.show()
46
+ ```
47
+
48
+ <!-- ![arch](figs/example.png) -->
49
+ <div align="center">
50
+ <img src="figs/example.png" alt="arch" width="300" height="300" />
51
+ </div>
52
+
53
+ Generate a picture called *a house in the snow* combining the style of Claude Monet <img src="figs/artist.svg" width="30" height="30" /> and my little brother <img src="figs/baby.svg" width="30" height="30" />.
54
+ ```python
55
+ import os
56
+ from PIL import Image
57
+ from instructg2i import image_grid, InstructG2IMultiGuidePipeline, get_neighbor_transforms
58
+
59
+ # load the model
60
+ pipeline = InstructG2IMultiGuidePipeline.from_pretrained("PeterJinGo/VirtualArtist", neighbor_num=5, device='cuda:0')
61
+
62
+ # configuration
63
+ text_prompt = 'a house in the snow' # a man playing soccer, a man playing piano
64
+ scale_as = [0, 3, 10]
65
+ scale_bs = [0, 5, 15]
66
+
67
+ # read the sampled neighbors
68
+ path1 = "examples/monet_pictures"
69
+ path2 = "examples/children_pictures"
70
+ neighbor_images = [[neighbor_transforms(Image.open(os.path.join(path1, n_file)).convert("RGB")) for n_file in os.listdir(path1)],
71
+ [neighbor_transforms(Image.open(os.path.join(path2, n_file)).convert("RGB")) for n_file in os.listdir(path2)]]
72
+ neighbor_masks = [[1,1,1,1,1],
73
+ [1,1,1,1,1]]
74
+
75
+ # generation
76
+ image_gens = []
77
+ neighbor_transforms = get_neighbor_transforms(resolution=256)
78
+ for scale_a in scale_as:
79
+ for scale_b in scale_bs:
80
+ graph_guidance_scales = [scale_a, scale_b]
81
+
82
+ image_gen = pipeline(prompt=text_prompt,
83
+ neighbor_images=neighbor_images,
84
+ neighbor_masks=neighbor_masks,
85
+ graph_guidance_scales=graph_guidance_scales,
86
+ num_inference_steps=100).images[0]
87
+ image_gens.append(image_gen)
88
+ res_grid = image_grid(image_gens, len(scale_as), len(scale_bs))
89
+ res_grid.show()
90
+ ```
91
+
92
+ <!-- ![arch](figs/example2.png) -->
93
+ <div align="center">
94
+ <img src="figs/example2.png" alt="arch" width="400" height="400" />
95
+ </div>
96
+
97
+ ## Download Models
98
+
99
+ ### Image Encoder
100
+ Create an image_encoder folder by ```mkdir image_encoder```, then place the files downloaded [here](https://drive.google.com/drive/folders/1AtbN401MDSVLZlH5webITfskkIIjUPLZ?usp=sharing) into the folder.
101
+
102
+ ### InstructG2I checkpoints
103
+
104
+ The virtual artist InstructG2I checkpoint which is trained on Artwork graphs can be downloaded [here](https://drive.google.com/drive/folders/1ntmPgZXmb-M-k5M0Cnh34p0fxoeKnnYC?usp=sharing) or [here](https://huggingface.co/PeterJinGo/VirtualArtist).
105
+
106
+ ```python
107
+ from huggingface_hub import snapshot_download
108
+ snapshot_download(repo_id="PeterJinGo/VirtualArtist", local_dir=your_local_path)
109
+ ```
110
+
111
+ The InstructG2I checkpoints for the Amazon graph and Goodreads graph can be found [here](https://drive.google.com/drive/folders/1rPhc-LFoyqDrqn6gigTogFB7cEpRLx72?usp=sharing).
112
+
113
+ ## Citations
114
+ If you find InstructG2I useful for your research and applications, please cite using this BibTeX:
115
+ ```bibtex
116
+
117
+ ```