File size: 8,325 Bytes
0c17f2b 94a16b9 e625f94 4aed4a7 0c17f2b 4aed4a7 7bc6a25 4aed4a7 7bc6a25 6e983c8 7bc6a25 6e983c8 7bc6a25 4aed4a7 7bc6a25 6e983c8 7bc6a25 6e983c8 7bc6a25 4aed4a7 7bc6a25 6e983c8 7bc6a25 6e983c8 7bc6a25 89fc6f3 7bc6a25 6e983c8 7bc6a25 6e983c8 7bc6a25 0c17f2b 577146c 0c17f2b 3b10db1 0c17f2b 577146c 0c17f2b 3b10db1 0c17f2b 3b10db1 0c17f2b 3b10db1 0c17f2b 3b10db1 0c17f2b 89fc6f3 3b10db1 0c17f2b 3b10db1 0c17f2b 3b10db1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- collectivat/tv3_parla
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- projecte-aina/parlament_parla
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-300m-ca-lm
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 6.771703090587865
- name: Test CER
type: cer
value: 2.1007777843712293
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 5.565360630662431
- name: Test CER
type: cer
value: 1.8594390167034354
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 13.53312545713516
- name: Test CER
type: cer
value: 8.684635913340556
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Catalan Dev Data
type: speech-recognition-community-v2/dev_data
args: ca
metrics:
- name: Test WER
type: wer
value: 26.04515843400164
- name: Test CER
type: cer
value: 15.056890012642224
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ca
metrics:
- name: Test WER
type: wer
value: 17.68
---
# wav2vec2-xls-r-300m-ca-lm
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets.
It achieves the following results on the evaluation set (for the three datasets and without the LM):
- Loss: 0.2472
- Wer: 0.1499
## Model description
Please check the original [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) Model card. This is just a finetuned version of that model.
## Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
## Training and evaluation data
More information needed
## Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 18.0
- mixed_precision_training: Native AMP
### Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.2099 | 0.09 | 500 | 3.4125 | 1.0 |
| 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 |
| 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 |
| 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 |
| 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 |
| 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 |
| 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 |
| 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 |
| 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 |
| 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 |
| 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 |
| 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 |
| 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 |
| 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 |
| 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 |
| 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 |
| 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 |
| 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 |
| 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 |
| 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 |
| 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 |
| 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 |
| 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 |
| 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 |
| 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 |
| 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 |
| 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 |
| 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 |
| 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 |
| 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 |
| 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 |
| 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 |
| 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 |
| 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 |
| 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 |
| 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 |
| 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 |
| 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 |
| 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 |
| 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 |
| 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 |
| 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 |
| 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 |
| 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 |
| 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 |
| 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 |
| 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 |
| 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 |
| 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 |
| 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 |
| 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 |
| 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 |
| 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 |
| 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 |
| 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 |
| 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 |
| 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 |
| 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 |
| 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 |
| 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 |
| 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 |
| 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
# Thanks
Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
|