File size: 1,009 Bytes
443d5a6
0f81a85
443d5a6
0f81a85
443d5a6
 
 
 
 
7b60dc1
 
0f81a85
 
61f5efe
 
443d5a6
 
56bc626
 
b2a2a34
9e0e053
b2a2a34
9e0e053
b2a2a34
875b6e0
0f81a85
ea871a5
56bc626
0f81a85
56bc626
0f81a85
 
56bc626
 
0f81a85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
inference: false
fine-tuning: true
tags:
- generative error correction
- large language model
- LLaMA
metrics:
- wer
datasets:
- PeacefulData/Robust-HyPoradise
---

This repo releases the trained LLaMA-adapter weights in paper "Large Language Models are Efficient Learners of Noise-Robust Speech Recognition."

**GitHub:** https://github.com/YUCHEN005/RobustGER

**Data:** https://huggingface.co/datasets/PeacefulData/Robust-HyPoradise

**Model:** This repo

If you consider this work would be related or useful for your research, please kindly consider to cite the work in ICLR 2024. Thank you.

```bib
@inproceedings{hu2024large,
  title={Large Language Models are Efficient Learners of Noise-Robust Speech Recognition},
  author={Hu, Yuchen and Chen, Chen and Yang, Chao-Han Huck and Li, Ruizhe and Zhang, Chao and Chen, Pin-Yu and Chng, Eng Siong},
  booktitle={International Conference on Learning Representations},
  year={2024}
}
```