Pbug commited on
Commit
0ad612d
·
verified ·
1 Parent(s): a18dfec

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +147 -0
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: Undi95/Meta-Llama-3-8B-hf
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: lora-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.4.0`
18
+ ```yaml
19
+ base_model: Undi95/Meta-Llama-3-8B-hf
20
+ model_type: LlamaForCausalLM
21
+ tokenizer_type: AutoTokenizer
22
+
23
+ load_in_8bit: false
24
+ load_in_4bit: false
25
+ strict: false
26
+
27
+ datasets:
28
+ - path: Pbug/bftest
29
+ type: sharegpt
30
+ dataset_prepared_path:
31
+ val_set_size: 0.05
32
+ output_dir: ./lora-out
33
+
34
+ sequence_len: 8192
35
+ sample_packing: true
36
+ pad_to_sequence_len: true
37
+
38
+ wandb_project:
39
+ wandb_entity:
40
+ wandb_watch:
41
+ wandb_name:
42
+ wandb_log_model:
43
+
44
+ gradient_accumulation_steps: 8
45
+ micro_batch_size: 1
46
+ num_epochs: 10
47
+ optimizer: paged_adamw_8bit
48
+ lr_scheduler: cosine
49
+ learning_rate: 2e-5
50
+
51
+ train_on_inputs: false
52
+ group_by_length: false
53
+ bf16: auto
54
+ fp16:
55
+ tf32: false
56
+
57
+ gradient_checkpointing: true
58
+ gradient_checkpointing_kwargs:
59
+ use_reentrant: false
60
+ early_stopping_patience:
61
+ resume_from_checkpoint:
62
+ logging_steps: 1
63
+ xformers_attention:
64
+ flash_attention: true
65
+
66
+ warmup_steps: 100
67
+ evals_per_epoch: 2
68
+ eval_table_size:
69
+ eval_sample_packing: False
70
+ saves_per_epoch: 1
71
+ debug:
72
+ deepspeed:
73
+ weight_decay: 0.0
74
+ fsdp:
75
+ fsdp_config:
76
+ special_tokens:
77
+ pad_token: <|end_of_text|>
78
+ ```
79
+
80
+ </details><br>
81
+
82
+ # lora-out
83
+
84
+ This model is a fine-tuned version of [Undi95/Meta-Llama-3-8B-hf](https://huggingface.co/Undi95/Meta-Llama-3-8B-hf) on the None dataset.
85
+ It achieves the following results on the evaluation set:
86
+ - Loss: nan
87
+
88
+ ## Model description
89
+
90
+ More information needed
91
+
92
+ ## Intended uses & limitations
93
+
94
+ More information needed
95
+
96
+ ## Training and evaluation data
97
+
98
+ More information needed
99
+
100
+ ## Training procedure
101
+
102
+ ### Training hyperparameters
103
+
104
+ The following hyperparameters were used during training:
105
+ - learning_rate: 2e-05
106
+ - train_batch_size: 1
107
+ - eval_batch_size: 1
108
+ - seed: 42
109
+ - gradient_accumulation_steps: 8
110
+ - total_train_batch_size: 8
111
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
112
+ - lr_scheduler_type: cosine
113
+ - lr_scheduler_warmup_steps: 100
114
+ - num_epochs: 10
115
+
116
+ ### Training results
117
+
118
+ | Training Loss | Epoch | Step | Validation Loss |
119
+ |:-------------:|:-----:|:----:|:---------------:|
120
+ | 2.5419 | 0.03 | 1 | nan |
121
+ | 2.5492 | 0.51 | 18 | nan |
122
+ | 2.434 | 1.01 | 36 | nan |
123
+ | 2.3504 | 1.5 | 54 | nan |
124
+ | 2.3643 | 2.0 | 72 | nan |
125
+ | 2.2834 | 2.48 | 90 | nan |
126
+ | 2.2383 | 2.98 | 108 | nan |
127
+ | 1.8786 | 3.47 | 126 | nan |
128
+ | 1.7963 | 3.98 | 144 | nan |
129
+ | 2.1853 | 4.47 | 162 | nan |
130
+ | 1.4333 | 4.98 | 180 | nan |
131
+ | 1.2058 | 5.46 | 198 | nan |
132
+ | 1.125 | 5.96 | 216 | nan |
133
+ | 0.809 | 6.44 | 234 | nan |
134
+ | 0.7118 | 6.94 | 252 | nan |
135
+ | 0.7175 | 7.44 | 270 | nan |
136
+ | 0.7341 | 7.94 | 288 | nan |
137
+ | 0.774 | 8.44 | 306 | nan |
138
+ | 0.6379 | 8.94 | 324 | nan |
139
+ | 0.562 | 9.41 | 342 | nan |
140
+
141
+
142
+ ### Framework versions
143
+
144
+ - Transformers 4.40.0.dev0
145
+ - Pytorch 2.1.2+cu121
146
+ - Datasets 2.15.0
147
+ - Tokenizers 0.15.0