PawanKrGunjan
commited on
End of training
Browse files- README.md +55 -109
- generation_config.json +0 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,134 +1,80 @@
|
|
1 |
---
|
2 |
base_model: microsoft/trocr-base-handwritten
|
3 |
tags:
|
4 |
-
-
|
5 |
-
- image-to-text
|
6 |
-
- license-plate-number
|
7 |
model-index:
|
8 |
- name: license_plate_recognizer
|
9 |
-
results:
|
10 |
-
- task:
|
11 |
-
type: image-to-text
|
12 |
-
name: License Plate Recognition
|
13 |
-
dataset:
|
14 |
-
type: custom_dataset
|
15 |
-
name: Custom License Plate Dataset
|
16 |
-
config: default
|
17 |
-
split: test
|
18 |
-
revision: main
|
19 |
-
metrics:
|
20 |
-
- type: cer
|
21 |
-
value: 0.0231
|
22 |
-
name: Test CER
|
23 |
-
config: default
|
24 |
-
args:
|
25 |
-
max_order: 4
|
26 |
-
source:
|
27 |
-
name: Hugging Face Model Card
|
28 |
-
url: https://huggingface.co/PawanKrGunjan/license_plate_recognizer
|
29 |
-
license: mit
|
30 |
-
language:
|
31 |
-
- en
|
32 |
-
metrics:
|
33 |
-
- cer
|
34 |
-
library_name: transformers
|
35 |
-
pipeline_tag: image-to-text
|
36 |
-
datasets:
|
37 |
-
- charliexu07/license_plates
|
38 |
---
|
|
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
should probably proofread and complete it, then remove this comment. -->
|
41 |
|
42 |
-
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pawankrgunjan/huggingface/runs/
|
43 |
-
|
44 |
-
|
45 |
# license_plate_recognizer
|
46 |
|
47 |
-
This model is a fine-tuned version of [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten)
|
|
|
|
|
|
|
48 |
|
49 |
-
## Model
|
50 |
|
51 |
-
|
52 |
|
53 |
-
## Intended
|
54 |
|
55 |
-
|
56 |
-
- **License Plate Recognition:** This model is designed to extract and transcribe alphanumeric characters from images of license plates. It can be used in various applications such as automated toll systems, parking management, and law enforcement.
|
57 |
|
58 |
-
|
59 |
-
- **Character Set:** The model is optimized for the specific alphanumeric characters commonly found on license plates. It may not perform well on text outside this domain.
|
60 |
-
- **Environmental Factors:** While robust to typical variations in image quality, extreme conditions like very low light, heavy blurring, or unusual angles may reduce accuracy.
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
### Training Hyperparameters
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
-
-
|
72 |
-
-
|
73 |
-
-
|
74 |
-
-
|
75 |
-
-
|
76 |
-
-
|
77 |
-
-
|
78 |
|
79 |
-
### Training
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
# Preprocess the image
|
116 |
-
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
117 |
-
|
118 |
-
# Generate text (license plate number)
|
119 |
-
generated_ids = model.generate(pixel_values)
|
120 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
121 |
-
|
122 |
-
print("Recognized License Plate Number:", generated_text)
|
123 |
-
```
|
124 |
-
|
125 |
-
In this example:
|
126 |
-
1. Replace the `url` with the actual URL of an image containing a license plate.
|
127 |
-
2. The model and processor are loaded from your fine-tuned model on the Hugging Face Hub (`PawanKrGunjan/license_plate_recognizer`).
|
128 |
-
|
129 |
-
## Framework Versions
|
130 |
-
|
131 |
-
- **Transformers:** 4.42.3
|
132 |
-
- **Pytorch:** 2.1.2
|
133 |
-
- **Datasets:** 2.20.0
|
134 |
-
- **Tokenizers:** 0.19.1
|
|
|
1 |
---
|
2 |
base_model: microsoft/trocr-base-handwritten
|
3 |
tags:
|
4 |
+
- generated_from_trainer
|
|
|
|
|
5 |
model-index:
|
6 |
- name: license_plate_recognizer
|
7 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
+
|
10 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pawankrgunjan/huggingface/runs/ajvl0e6b)
|
|
|
|
|
14 |
# license_plate_recognizer
|
15 |
|
16 |
+
This model is a fine-tuned version of [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0097
|
19 |
+
- Cer: 0.0036
|
20 |
|
21 |
+
## Model description
|
22 |
|
23 |
+
More information needed
|
24 |
|
25 |
+
## Intended uses & limitations
|
26 |
|
27 |
+
More information needed
|
|
|
28 |
|
29 |
+
## Training and evaluation data
|
|
|
|
|
30 |
|
31 |
+
More information needed
|
32 |
|
33 |
+
## Training procedure
|
34 |
|
35 |
+
### Training hyperparameters
|
|
|
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 23
|
45 |
|
46 |
+
### Training results
|
47 |
|
48 |
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
49 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
50 |
+
| 0.1485 | 1.0 | 397 | 0.0528 | 0.0182 |
|
51 |
+
| 0.0843 | 2.0 | 794 | 0.0371 | 0.0089 |
|
52 |
+
| 0.0552 | 3.0 | 1191 | 0.0417 | 0.0129 |
|
53 |
+
| 0.0812 | 4.0 | 1588 | 0.0386 | 0.0115 |
|
54 |
+
| 0.0315 | 5.0 | 1985 | 0.0198 | 0.0053 |
|
55 |
+
| 0.0178 | 6.0 | 2382 | 0.0263 | 0.0084 |
|
56 |
+
| 0.0341 | 7.0 | 2779 | 0.0179 | 0.0067 |
|
57 |
+
| 0.0143 | 8.0 | 3176 | 0.0149 | 0.0080 |
|
58 |
+
| 0.0047 | 9.0 | 3573 | 0.0055 | 0.0027 |
|
59 |
+
| 0.0163 | 10.0 | 3970 | 0.0062 | 0.0022 |
|
60 |
+
| 0.0045 | 11.0 | 4367 | 0.0049 | 0.0027 |
|
61 |
+
| 0.0115 | 12.0 | 4764 | 0.0077 | 0.0053 |
|
62 |
+
| 0.0014 | 13.0 | 5161 | 0.0031 | 0.0022 |
|
63 |
+
| 0.0081 | 14.0 | 5558 | 0.0052 | 0.0031 |
|
64 |
+
| 0.0001 | 15.0 | 5955 | 0.0056 | 0.0035 |
|
65 |
+
| 0.0005 | 16.0 | 6352 | 0.0057 | 0.0027 |
|
66 |
+
| 0.0009 | 17.0 | 6749 | 0.0053 | 0.0022 |
|
67 |
+
| 0.0003 | 18.0 | 7146 | 0.0067 | 0.0027 |
|
68 |
+
| 0.0001 | 19.0 | 7543 | 0.0044 | 0.0018 |
|
69 |
+
| 0.0001 | 20.0 | 7940 | 0.0052 | 0.0018 |
|
70 |
+
| 0.0 | 21.0 | 8337 | 0.0050 | 0.0018 |
|
71 |
+
| 0.0 | 22.0 | 8734 | 0.0051 | 0.0018 |
|
72 |
+
| 0.0 | 23.0 | 9131 | 0.0051 | 0.0018 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.42.3
|
78 |
+
- Pytorch 2.1.2
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_config.json
CHANGED
@@ -3,7 +3,6 @@
|
|
3 |
"decoder_start_token_id": 0,
|
4 |
"early_stopping": true,
|
5 |
"eos_token_id": 2,
|
6 |
-
"max_length": 128,
|
7 |
"num_beams": 3,
|
8 |
"pad_token_id": 1,
|
9 |
"transformers_version": "4.42.3",
|
|
|
3 |
"decoder_start_token_id": 0,
|
4 |
"early_stopping": true,
|
5 |
"eos_token_id": 2,
|
|
|
6 |
"num_beams": 3,
|
7 |
"pad_token_id": 1,
|
8 |
"transformers_version": "4.42.3",
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1335747032
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5161a5497ff8a87587c30bf6b64cdb82087efb6b49475f319939794bebd34f00
|
3 |
size 1335747032
|