PavanDeepak commited on
Commit
a18f7a3
·
verified ·
1 Parent(s): 85fb178

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -34,26 +34,26 @@ The model leverages the BertForSequenceClassification architecture, It has been
34
  ## Example
35
 
36
  ```python
37
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
38
- import numpy as np
39
- from scipy.special import expit
40
 
41
- MODEL = "PavanDeepak/Topic_Classification"
42
- tokenizer = AutoTokenizer.from_pretrained(MODEL)
43
- model = AutoModelForSequenceClassification.from_pretrained(MODEL)
44
- class_mapping = model.config.id2label
45
 
46
- text = "I love chicken manchuria"
47
- tokens = tokenizer(text, return_tensors="pt")
48
- output = model(**tokens)
49
 
50
- scores = output.logits[0][0].detach().numpy()
51
- scores = expit(scores)
52
- predictions = (scores >= 0.5) * 1
53
 
54
- for i in range(len(predictions)):
55
- if predictions[i]:
56
- print(class_mapping[i])
57
  ```python
58
 
59
 
 
34
  ## Example
35
 
36
  ```python
37
+ >>> from transformers import AutoModelForSequenceClassification, AutoTokenizer
38
+ >>> import numpy as np
39
+ >>> from scipy.special import expit
40
 
41
+ >>> MODEL = "PavanDeepak/Topic_Classification"
42
+ >>> tokenizer = AutoTokenizer.from_pretrained(MODEL)
43
+ >>> model = AutoModelForSequenceClassification.from_pretrained(MODEL)
44
+ >>> class_mapping = model.config.id2label
45
 
46
+ >>> text = "I love chicken manchuria"
47
+ >>> tokens = tokenizer(text, return_tensors="pt")
48
+ >>> output = model(**tokens)
49
 
50
+ >>> scores = output.logits[0][0].detach().numpy()
51
+ >>> scores = expit(scores)
52
+ >>> predictions = (scores >= 0.5) * 1
53
 
54
+ >>> for i in range(len(predictions)):
55
+ >>> if predictions[i]:
56
+ >>> print(class_mapping[i])
57
  ```python
58
 
59